Регулируемая и нерегулируемая реабсорбция различных веществ. Канальцевая реабсорбция. Методы исследования экскреторной функции ночек

Канальцевая реабсорбция – обратное всасывание воды и других биологически активных веществ из ультрафильтрата (первичной мочи), происходящее в канальцах при образовании окончательной (пузырной) мочи почками. Канальцевая реабсорбция тесно связана с концентрационной и водовыделительной функциями почек. В первом случае обеспечивается осмотическое давление мочи, превышающее осмотическое давление плазмы крови. В последнем случае особенно важна для поддержания постоянства гомеостаза водосберегающая роль почек. При этом вода в значительно больших количествах реабсорбируется в канальцах, чем натрий, хлориды, глюкоза, бикарбонаты и другие осмотически активные вещества. В проксимальном отделе канальцевого аппарата около 80-90% воды ультрафильтрата всасывается обратно в кровь и лишь 10-20% поступает в следующие отделы нефрона (петлю Генле). В свою очередь, степень всасывания воды определяется осмотическим давлением в проксимальном отделе нефрона, которое регулируется натрием – основным катионом первичной мочи. Чем больше фильтрация, тем выше и реабсорбция.

В дистальном отделе нефрона вода реабсорбируется не за счет натрия, а под влиянием антидиуретического гормона гипофиза (антидиуретический рефлекс). В свою очередь секреция антидиуретического гормона зависит от осмотического давления внеклеточной жидкости и крови. Следующим механизмом обратного всасывания является форникальная реабсорбция, зависящая во многом от гидростатического давления в чашечно-лоханочной системе и от осмотического градиента между мочой и интерстицием мозгового слоя почки, особенно зоны сосочка. Форникальная реабсорбция существенно усиливается при полиурии.

Канальцевая реабсорбция играет большую роль в регуляции электролитов крови (натрия, хлора, бикарбонатов и д.) и, прежде всего, в их сохранении для обеспечения постоянства ее химического состава. Большая часть натрия и хлора реабсорбируется в проксимальном отделе канальцевого аппарата. Калий, также почти полностью всасываясь из первичной мочи в проксимальных канальцах, затем вновь появляется в моче дистального отдела нефрона за счет активной экскреции клетками эпителия. При этом низкий уровень калия в моче угнетает его реабсорбцию, а высокий - снижает его экскрецию.
В практической урологии для оценки функции почек используют показатель канальцевой реабсорбции воды (в %), определяемый по формуле:

Где R H20 – реабсорбция воды в канальцах (%),
С- клиренс (величина клубочковой фильтрации в мл/мин),
V - диурез (мл/мин).
При нормальной функции почек показатель канальцевой реабсорбции воды равен 97-99%.

8606 0

Белок

В процессе клубочковой фильтрации образуется практически безбелковая жидкость, однако через фильтрующую мембрану в нефрон проникает все же небольшое количество различных белков. Они всасываются клетками проксимальных канальцев; экскреция белка в норме не превышает 20—75 мг/сут, хотя при некоторых патологических состояниях протеинурия может достигать 50 г/сут. Реабсорбция белка происходит с помощью процесса, называемого пиноцитозом.

Увеличение экскреции белка почкой может быть обусловлено возрастанием фильтрации белка в клубочках, превышающей способность канальцев к его реабсорбции, и нарушением обратного всасывания белков. Существуют раздельные системы реабсорбции различных белков, так как обнаружен Тm для гемоглобина, альбумина. Протеинурия в клинике может выявляться не только при патологических, но и при ряде физиологических состояний - большой физической нагрузке (маршевая альбуминурия), переходе в вертикальное положение (ортостатическая альбуминурия), повышении венозного давления и др.

Натрий и хлор

Ионы натрия и хлора преобладают во внеклеточной жидкости; они определяют осмотическую концентрацию плазмы крови, от их выведения или удержания почкой зависит регуляции объема внеклеточной жидкости. Так как состав ультрафильтрата весьма близок к внеклеточной жидкости, в первичной моче в наибольшем количестве содержатся ионы натрия и хлора, реабсорбция которых в молярном выражении превышает обратное всасывание всех остальных профильтровавшихся веществ, вместе взятых.

Реабсорбция натрия и хлора в дистальном сегменте нефрона и собирательных трубках обеспечивает участие в осмотическом гомеостазе. Не менее важно и то, что система транспорта натрия связана с трансмембранным переносом большой группы органических и неорганических веществ. В последние годы существенно изменились представления о механизмах, транспорта ионов клетками нефрона [Лебедев А. А., 1972; Наточин Ю. В., 1972; Vogel Н., Ullrich К., 1978]. Если раньше считали активным только транспорт натрия, то в настоящее время убедительно продемонстрирована способность клеток одного из отделов нефрона к активному транспорту ионов хлора; . Сильно изменились представления о механизме реабсорбции жидкости в проксимальном канальце. Ниже обобщены современные данные о реабсорбции натрия и хлора в почечных канальцах и регуляции этого процесса.

В проксимальном сегменте нефрона, включающем извитой и прямой канальцы, реабсорбируется около 2/3 профильтровавшегося натрия и воды, но концентрация натрия в канальцевой жидкости остается такой же, как в плазме крови. Особенность проксимальной реабсорбции заключается в том, что натрий и другие реабсорбируемые вещества всасываются с осмотически эквивалентным объемом воды и содержимое канальца всегда остается изоосмотичным плазме крови. Это обусловлено высокой проницаемостью для воды стенки проксимального канальца.

Клетки этого канальца активно реабсорбируют натрий. В начальных отделах канальца главным анионом, сопровождающим натрий, является бикарбонат; стенка этой части нефрона для хлоридов менее проницаема, что приводит к постепенному увеличению концентрации хлоридов, которая возрастает в 1,4 раза по сравнению с плазмой крови. В начальных частях проксимального канальца интенсивно реабсорбируются глюкоза, аминокислоты и некоторые другие органические компоненты ультрафильтрата. Таким образом, к конечным частям проксимального извитого канальца состав из осмотической жидкости существенно изменяется - из нее всасываются основная масса бикарбоната, многие органические вещества, но становится выше концентрация хлоридов (рис. 1).

Оказалось, что межклеточные контакты в этой части канальца высокопроницаемы для хлоридов. Так как их концентрация в просвете выше, чем в околоканальцевой жидкости и крови, они пассивно реабсорбируются из канальца, увлекая за собой натрий и воду. В прямом отделе проксимального канальца продолжается реабсорбция натрия и хлоридов. В этом отделе происходят как активный транспорт натрия, так и пассивная реабсорбция хлоридов и движение части натрия вместе с ними по межклеточным промежуткам, хорошо проницаемым для хлоридов.

Рис. 1. Локализация реабсорбции и секреции электролитов и неэлектролитов в нефроне. Стрелка, обращенная из просвета канальца, - реабсорбция вещества, в просвет канальца - секреция.

Проницаемость стенки канальцев для ионов и воды определяется свойствами не только мембран клеток, но и зоны плотного соединения, где клетки контактируют друг с другом. Оба этих элемента существенно отличаются в разных отделах нефрона. Через апикальную мембрану клетки натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала, так как внутренняя поверхность клетки электроотрицательна по отношению к канальцевой жидкости.

Далее натрий движется по цитоплазме к базальной и боковым частям клетки, где находятся натриевые насосы. В этих клетках интегральной частью натриевого насоса служит активируемая ионами Na+ и К+ зависимая от Mg2+ аденозинтрифосфатаза (Na+, К+-АТФ-аза) . Этот фермент, используя энергию АТФ, обеспечивает перенос из клетки ионов натрия и поступление в нее ионов калия. Ингибиторами этого фермента служат сердечные гликозиды (например, уабаин, строфантин К и др.) полностью прекращающие активную реабсорбцию натрия клетками проксимального канальца.

Важнейшее значение в функциональной способности проксимального канальца имеет высокопроницаемая для некоторых ионов и воды зона клеточных контактов. Через нее происходят пассивная реабсорбция хлоридов и движение воды по осмотическому градиенту. Полагают, что скорость всасывания жидкости по межклеточным промежуткам регулируется под влиянием таких физических сил, как соотношение между уровнем гидростатического давления в почечных артериях, венах и мочеточнике, величина онкотического давления в околоканальцевых капиллярах и др. Проницаемость межклеточных промежутков не строго постоянна - она может меняться при ряде физиологических состояний. Даже небольшое увеличение осмотического градиента, вызываемое мочевиной, обратимо увеличивает межклеточную проницаемость в почечных канальцах.

В тонком нисходящем отделе петли Генле не происходит сколько-нибудь существенной реабсорбции натрия и хлора. Особенностью этого канальца по сравнению с тонким и толстым восходящим отделом петли Генле является высокая проницаемость для воды. Тонкий нисходящий отдел петли характер разуется низкой проницаемостью для натрия, а восходящий наоборот - высокой. Пройдя по тонкому отделу петли Генле, жидкость поступает в толстый восходящий отдел петли. Стенка этого канальца всегда имеет низкую проницаемость для воды. Особенность клеток этого канальца состоит в том, что в них функционирует хлорный насос, активно реабсорбирующий хлор из просвета канальца, натрий следует пассивно по градиенту. Неясно, происходит ли в этом канальце только пассивная реабсорбция натрия или частично функционирует и натриевый насос.

С клинической точки зрения важно, что открытие хлорного насоса совпало с выяснением механизма действия ряда наиболее эффективных современных диуретиков . Оказалось, что только при введении в просвет толстого восходящего отдела петли фуросемид и этакриновая кислота полностью угнетают реабсорбцию хлора. Они связываются с мембранными элементами клеток изнутри канальца, препятствуют поступлению хлора в клетку, а потому неэффективны при добавлении к внеклеточной жидкости (рис. 2). Эти диуретики поступают в просвет нефрона при фильтрации и секреции в проксимальном канальце, с током мочи достигают восходящего отдела петли Генле, прекращают реабсорбцию хлора и тем самым препятствуют здесь всасыванию натрия.

Рис. 2. Схема регуляции транспорта натрия и хлоридов в почке и механизма действия диуретиков [Наточин Ю. В., 1977]. Сплошной стрелкой показан активный транспорт, пунктирной - пассивный.

Толстый восходящий отдел петли Генле переходит в прямую часть дистального канальца, достигающую области macula densa, за которой следует дистальный извитой каналец. Этот отдел нефрона также малопроницаем для воды. Ведущим механизмом реабсорбции солей в этом канальце является натриевый насос, обеспечивающий реабсорбцию натрия против высокого электрохимического градиента. Особенность реабсорбции натрия в этом отделе состоит в том, что хотя здесь может всосаться лишь 10% профильтровавшегося натрия и скорость реабсорбции меньше, чем в проксимальном канальце, но создается больший концентрационный градиент, концентрация натрия и хлора в просвете может снижаться до 30-40 ммоль /л. В отличие от натрия реабсорбция хлора происходит в основном пассивно.

Связующий отдел соединяет дистальный сегмент нефрона с начальными отделами собирательных трубок. Эти канальцы раньше считавшиеся пассивными проводниками мочи в мочевыводящую систему, являются важнейшими структурами почки, тонко и точно реагирующими на действие гормонов и приспосабливающими работу почки к потребностям организма. В этих канальцах основой реабсорбции служит натриевый насос, хлориды реабсорбируются пассивно. Стенка канальцев может быть не только водонепроницаемой, но и высокопроницаемой для воды в присутствии АДГ. Именно в этом отделе канальцев (а не в дистальном сегменте, как полагали раньше) действует АДГ.

Транспорт натрия в этих клетках регулируется альдостероном. Изменение характера ионного транспорта и тем самым свойств переносчиков и насосов отражается и на особенностях химической структуры диуретиков, которые эффективны в этом отделе нефрона. В этих канальцах действуют верошпирон, амилорид, триамтерен. Верошпирон снижает реабсорбцию натрия, конкурентно уменьшая действие альдостерона. Совсем иной механизм действия у амилорида и триамтерена. Эти препараты действуют только после того, как попадут в просвет нефрона. Они связываются с теми химическими компонентами апикальной мембраны, которые обеспечивают вход натрия в клетку; натрий не может реабсорбироваться и экскретируется с мочой.

Кортикальные отделы собирательных трубок переходят в отделы, проходящие по мозговому веществу почки. Их функция отличается тем, что они способны активно реабсорбировать совсем небольшие количества натрия, но могут создавать очень высокий концентрационный градиент. Стенка этих канальцев малопроницаема для солей, а ее проницаемость для воды регулируется АДГ.

Клиническая нефрология

под ред. Е.М. Тареева

Изучение функции почек начинается с проведения исследования общего анализа мочи.

Общий анализ мочи :

Цвет: в норме имеет все оттенки желтого цвета.

Прозрачность. В норме моча прозрачная, помутнение могут вызывать форменные элементы крови, эпителий, слизь, липиды, соли. Глюкоза и белки плазмы крови помутнения мочи не вызывают.

Относительная плотность утренней мочи в норме более 1018. На величину относительной плотности влияют присутствие белка (3-4 г/л повышает на 0,001) и глюкозы (2,7 г/л повышает на 0,001). Для более точной оценки концентрационной способности почек используется проба Зимницкого.

Реакция мочи — слабо кислая.

Белок — в норме не выявляется, либо выявляется в следовых количествах (до 0,033 г/л, или 10–30 мг в сутки).

Микроскопия осадка

Лейкоциты. В осадке нормальной мочи попадаются лишь единичные лейкоциты. Выделение большого количества их с мочой (8-10 и больше в поле зрения при большом увеличении) является патологией (лейкоцитурия).

Эритроциты.
Нахождение при микроскопическом исследовании мочевого осадка одного эритроцита на несколько полей зрения является нормой, если в каждом поле зрения 1 и более – это гематурия.

Микрогематурией считается обнаружение эритроцитов только при микроскопии осадка мочи, макрогематурия сопровождается видимым невооруженным глазом изменением цвета мочи.

При констатировании у больного макро- или микрогематурии следует, прежде всего, решить вопрос о том, является она почечной или внепочечной (примешивается к моче в мочевыводящих путях). Этот вопрос решается на основании следующих данных:

    Цвет крови при почечной гематурии обычно буровато-красный, а при внепочечной - ярко-красный.

    Наличие в моче сгустков крови чаще всего говорит о том, что кровь происходит из мочевого пузыря или из лоханок.

    Наличие в мочевом осадке выщелоченных, т.е. лишенных гемоглобина, эритроцитов наблюдается чаще при почечной гематурии.

    Если при незначительном количестве эритроцитов (10-20 в поле зрения) количество белка в моче превышает 1 г/л, то гематурия, по всей вероятности, почечная. Наоборот, когда при значительном количестве эритроцитов (50-100 и более в поле зрения) концентрация белка ниже 1 г/л и в осадке отсутствуют цилиндры, гематурию следует признать внепочечной.

    Несомненным доказательством почечного характера гематурии является наличие в мочевом осадке эритроцитарных цилиндров. Так как цилиндры представляют собой слепки просветов мочевых канальцев, наличие их с несомненностью говорит о том, что эритроциты происходят из почек.

Наконец, при решении вопроса о происхождении эритроцитов следует учитывать и другие симптомы заболевания почек или мочевыводящих путей.

Почечная гематурия встречается:

          При остром гломерулонефрите.

          При обострении хронического гломерулонефрита.

          При застойных почках у больных с недостаточностью сердца.

          При инфаркте почки (характерным является возникновение внезапной гематурии, обычно макроскопической, одновременно с болью в области почки).

          При злокачественном новообразовании почки

          При кистозном перерождении почек.

          При туберкулезе почки.

          При заболеваниях, характеризующихся кровоточивостью (гемофилия, эссенциальная тромбопения, острый лейкоз и др.). Как правило, при этом наблюдаются кровотечения и из других органов.

          При тяжелых острых инфекционных заболеваниях (оспа, скарлатина, тифы, малярия, сепсис) вследствие токсического повреждения сосудов почек.

          При травматических повреждениях почек.

Эпителиальные клетки — в норме в небольшом количестве клетки плоского эпителия, это эпителий, выстилающий уретру.

Цилиндры — могут встречаться единичные гиалиновые цилиндры.

Проба Нечипоренко — количественная оценка числа лейкоцитов, эритроцитов, цилиндров в моче.

Бактериологическое исследование мочи — При обычном сборе не исключено попадание микроорганизмов с кожных покровов и начальной части уретры.

Трехстаканная проба

Эта проба была предложена для уточнения локализации источника гематурии и лейкоцитурии (почки или мочевыводящие пути). Считают, что при поражении уретры патологический осадок (лейкоциты, эритроциты) появляются в первой порции мочи. Для поражения почек, чашечно-лоханочной системы или мочеточников характерно появление патологического осадка во всех трех порциях мочи. При локализации патологического процесса в пришеечной части мочевого пузыря или у мужчин в предстательной железе гематурия или лейкоцитурия обнаруживается, главным образом, в третьей порции мочи.

Хотя трехстаканная проба проста и не обременительна для больного, ее результаты имеют лишь относительное значение для дифференциальной диагностики ренальной и постренальной гематурии и лейкоцитурии. Например, в некоторых случаях при поражении мочевого пузыря (постоянно кровоточащая опухоль и др.) гематурия может выявляться во всех трех порциях мочи, а при поражении мочеиспускательного канала - не в первой, а в третьей порции (терминальная гематурия) и т. д.

Функциональные исследования почек

Оценка клубочковой фильтрации

по клиренсу инулина признается «золотым стандартом» для определения почечной функции. Но метод этот друдоёмкий и технически не всегда выполнимый, поэтому в клинической практике наиболее часто используется метод определения СКФ по клиренсу эндогенного креатинина, который называют пробой Реберга-Тареева .

Есть разные вариации этого метода: исследование проводится в течение 1, 2, 6 часов, либо в течение суток (все это время производится сбор мочи). Наиболее достоверный результат получается при исследовании суточной мочи.

Расчет СКФ проводится по формуле:

C=(U×V мин)/P,

где C - клиренс вещества (мл/мин), U - концентрация исследуемого вещества в моче, Р - концентрация того же вещества в крови, V мин - минутный диурез (мл/мин).

СКФ в норме составляет 80-120 мл/мин. Повышается в физиологических условиях при беременности, а также при других состояниях, сопровождающихся увеличением почечного кровотока (при повышении сердечного выброса – гипертиреоз, анемия и др.) Снижение возможно при поражении клубочков, а также при снижении кровотока через почки (гиповолемия, застойная сердечная недостаточность и др.)

Оценка канальцевой реабсорбции

КР=(СКФ — V мин)/СКФ×100%,

где КР - канальцевая реабсорбция; СКФ - скорость клубочковой фи­льтрации; V мин – минутный диурез.

В норме канальцевая реабсорбция составляет 98- 99%, однако при большой водной нагрузке даже у здоро­вых людей может уменьшаться до 94-92%. Снижение канальцевой реабсорбции рано наступает при пиелонефрите, гидронефрозе, поликистозе. В то же время при заболеваниях почек с преимущественным поражением клубочков канальцевая реабсорбция уменьшается позже, чем клубочковая фильтрация.

Проба Зимницкого дает возможность определить динамику количества отделяемой мочи и ее относительной плотности в течение суток.

В норме (при сохраненной способности почек к осмотическому разведению и концентрированию мочи) на протяжении суток отмечаются:

    разница между максимальными и минимальными показателями должна составлять не менее 10 единиц (например, от 1006 до 1020 или от 1010 до 1026 и т. д.);

    не менее чем двукратное преобладание дневного диуреза над ночным.

    В молодом возрасте максимальная относительная плотность, характеризующая способность почек концентрировать мочу, должна быть не ниже 1,025, а у лиц старше 45–50 лет - не ниже 1,018.

    Минимальная относительная плотность, у здорового человека должна быть ниже осмотической концентрации безбелковой плазмы, равной 1,010–1,012.

Причинами нарушения концентрационной способности почек являются:

    Уменьшение числа функционирующих нефронов у больных с хронической почечной недостаточностью (ХПН) .

    Воспалительный отек интерстициальной ткани мозгового слоя почек и утолщение стенок собирательных трубок (например, при хроническом пиелонефрите, тубулоинтерстициальном нефрите и др.

    Гемодинамический отек интерстициальной ткани почек, например при застойной недостаточности кровообращения.

    Несахарный диабет с угнетением секреции АДГ или взаимодействия АДГ с почечными рецепторами.

    Прием осмотических диуретиков (концентрированный раствор глюкозы, мочевина и др.).

Причинами нарушения способности почек к разведению являются:

    уменьшение потребления жидкости, погодные условия, способствующие усиленному потоотделению;

    патологические состояние, сопровождающиеся снижением почечной перфузии при сохраненной концентрационной способности почек (застойная сердечная недостаточность, начальные стадии острого гломерулонефрита) и др.;

    заболевания и синдромы, сопровождающиеся выраженной протеинурией (нефротический синдром);

    сахарный диабет, протекающий с выраженной глюкозурией;

    токсикоз беременных;

    состояния, сопровождающиеся внепочечными потерями воды (лихорадка, ожоговая болезнь, обильная рвота, диарея и.др.).

Изменения суточного диуреза.

У здорового человека в течение суток выводится примерно 70–80% выпитой жидкости. Увеличение диуреза больше 80% выпитой за сутки жидкости у больных с застойной недостаточностью кровообращения может свидетельствовать о начале схождения отеков, а уменьшение ниже 70% - об их нарастании.

Полиурия - это обильное отделение мочи (более 2000 мл за сутки). Полиурия может быть обусловлена многими причинами:

Олигурия – это уменьшение количества выделяемой за сутки мочи (менее 400-500 мл). Олигурия может быть обусловлена как внепочечными причинами (ограничение потребления жидкости, усиленное потоотделение, профузные поносы, неукротимая рвота, задержка жидкости в организме у больных с сердечной недостаточностью), так и нарушениями функции почек у пациентов с гломерулонефритом, пиелонефритом, уремией и т. п.).

Анурия - это резкое уменьшение (до 100 мл в сутки и меньше) или полное прекращение выделения мочи. Различают два вида анурии.

    Секреторная анурия обусловлена выраженным нарушением клубочковой фильтрации, что может наблюдаться при шоке, острой кровопотере, уремии. В первых двух случаях нарушения клубочковой фильтрации связаны преимущественно с резким падением фильтрационного давления в клубочках, в последнем случае с гибелью более 70–80% нефронов.

    Экскреторная анурия (ишурия) связана с нарушением отделения мочи по мочевыводящим путям.

Никтурия - это равенство или даже преобладание ночного диуреза над дневным.

Лучевые методы диагностики заболеваний почек

Ультразвуковое исследование почек- описание формы, размера, положения почек, соотношения коркового и мозгового вещества, выявление кист, камней и дополнительных образований в почечной ткани.

Экскреторная урография — для определения анатомического и функционального состояния почек, почечных лоханок, мочеточников, мочевого пузыря и наличия в них конкрементов. Сущность метода заключается во внутривенном струйном введении рентгеноконтрастного вещества (йодсодержащий концентрированные растворы урографина, йогексола и др.). Препарат вводят внутривенно струйно медленно (в течение 2–3 мин). Серия рентгенограмм, выполняется традиционно на 7-й, 15-й, 25-й мин от начала введения контраста, при необходимости (замедление выведения, задержка контраста в некоторых отделах МВП) делаются «отсроченные» снимки.

Радиоизотопная ренография

Для проведения радиоизотопной ренографии используют гиппуран меченный 131 I, 80% которого при внутривенном введениисекретируется в проксимальных отделах канальцев и 20% выводится путемфильтрации .

Пункционная биопсия почек с последующим гистоморфологическим исследованием пунктата с помощью оптической, электронной и иммунофлуоресцентной микроскопии получила в последние годы широкое распространение в связи уникальной информативностью, превышающей все остальные методы исследования.

text_fields

text_fields

arrow_upward

Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией

В зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную .

Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция

text_fields

text_fields

arrow_upward

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже существенно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта.

Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов:

1) активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды,
2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды.

Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­ порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче.

Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют поглощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция

text_fields

text_fields

arrow_upward

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­ трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­ фаты. В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множи тельной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2).

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок - осмотическое давление мочи в условиях действия вазопрессина (концентрирование мочи).

Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм - пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая про тивоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции

text_fields

text_fields

arrow_upward

Регуляция каналъцевой реабсорбции осуществляется как нервным , так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза - цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи.

Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов - ренин- ангиотензинную, кининовую, простагландины и др. Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3).

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.
Б-л мембрана - базолатеральная мембрана клеток,
А мембрана - апикальная мембрана,
ГН - гуанидиновый нуклеотид,АЦ - аденилатциклаза.

После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые протеинкиназы. Под влиянием этих ферментов происходит фосфорилирование мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция воды регулируется и другими гормона­ми.

С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

1) повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);

2) меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);

3) меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

4) меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);

5) повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового.вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопрессином, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение).

Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.

Канальцевая реабсорбция - это процесс всасывания клетками канальцев и транспорт в клетками жидкость и капилляры почек необходимых для организма веществ с первичной мочи.

В проксимальном канальцев реабсорбируется 80% веществ: вся глюкоза, все витамины, гормоны, микроэлементы; около 85% NaCl и Н2О, а также около 50% мочевины, которые поступают в капилляры канальцев и возвращаются в общую систему кровообращения.

Для процесса реабсорбции существенное значение имеет понятие о порог вывода. Порог вывода - это концентрация вещества в крови, при которой она не может быть реабсорбована полностью. Практически все биологически важные для организма вещества имеют порог вывода. Например выделение с мочой глюкозы (глюкозурия) наступает тогда, когда ее концентрация в крови превышает 10 ммоль / л. При глюкозурии растет осмотическое давление мочи, что приводит к увеличению количества мочи (полиурии). Существуют также непорогови вещества, которые выделяются при любой концентрации их в плазме и ультрафильтрате.

Механизм реабсорбции включая пути: сначала вещества попадают из фильтрата в клетки канальца, далее переносятся транспортными системами мембраны в межклеточное пространство; из межклеточных пространств диффундируют в высокопроницаемых биляканальцеви капилляры.

Транспортировка может быть активным и пассивным. Активная реабсорбция происходит при участии специальных ферментативных систем с затратой энергии против электрохимического градиента. Активно реабсорбируются фофаты, Na +. За счет активной реабсорбции возможно повторное всасывание из мочи в кровь веществ, даже в том случае, когда их концентрация в крови равна концентрации в жидкости канальцев или выше.

Сопряженное транспортировки глюкозы и аминокислот. Из полости канальцев в клетки вещества транспортируются с помощью переносчика, который обязательно дополнительно присоединяет Na +. Внутри клетки комплекс распадается. Концентрация глюкозы возрастает, и по концентрационным градиентом она покидает клетку.

Пассивная реабсорбция происходит без затрат энергии благодаря диффузии и осмоса. Большая роль в этом процессе принадлежит разницы гидростатического давления в капиллярах канальцев. За счет пассивной реабсорбции осуществляется повторное всасывание Н2О, хлоридов, мочевины.

Еще один механизм реабсорбции - пиноцитоз. Таким образом происходит всасывание белков.

В результате активного транспорта Na + и сопровождающих его анионов, осмотическое давление фильтрата снижается и в капилляры путем осмоса переходит эквивалентное количество воды. В результате в канальцы образуется фильтрат, изотонический крови капилляра. Этот фильтрат попадает в петлю Генле. Здесь проходит дальнейшая реабсорбция и концентрирование мочи за счет поворотно-противопоточному системы. Концентрирования мочи происходит следующим образом. В восходящей части петли нефрона, которая проходит в мозговом веществе, активно реабсорбируются Na, К, Са, Mg, Cl, мочевина, попадая в межклеточную жидкость, они повышают там осмотическое давление. Нисходящая часть петли Генле проходит в области высокого осмотического давления, поэтому с этой части петли выходит вода в межклеточное пространство по законам осмоса. Выход Н2О из нисходящей части петли приводит к тому, что моча становится более концентрированной относительно плазмы крови. Это способствует реабсорбции Na + в восходящей части петли, в свою очередь, вызывает выход Н2О в нисходящей части. Эти два процесса сопряжены, в результате моча теряет в петле Генле большое количество Н2О и Na +, и на выходе из петли моча снова становится изотонический.

Таким образом, роль петли Генле как протипоточного концентрирующего механизма определяют следующие факторы:

1) близко роташування восходящего и нисходящего колен;

2) проницаемость нисходящего колена для Н2О;

3) непроницаемость нисходящего колена для растворенных веществ;

4) проницаемость восходящего сегмента для Na +, K +, Са2 +, Mg2 +, СГ;

5) наличие механизмов активного транспорта в восходящем колене.

В дистальной части канальца происходит дальнейшая реабсорбция Na +, K +, Са2 +, Mg2 +, Н2О, которая зависит от концентрации этих веществ в крови - факультативная реабсорбция. Если их много, то они не реабсорбируются, если мало, то они возвращаются в кровь. Дистальный отдел регулирует и поддерживает постоянство концентрации ионов Na + и К + в организме. Проницаемость стенок дистальной части канальца для Н2О регулируется АДГ (АДГ) гипофиза (секреция которого зависит от осмотического давления крови). При повышении осмотического давления (то есть уменьшении количества Н2О), возбуждаются осморецепторы гипоталамуса, секркции АДГ увеличивается, увеличивается проницаемость стенок канальца для Н20 и она реабсорбируется в кровь, то есть задерживается в организме, и осмотическое давление уменьшается.

Аналогично регулируется реабсорбция воды в уборочной трубочке, которая также участвует в образовании гипертонической или гипотонической мочи, в зависимости от потребности организма в воде.

Величину канальцевой реабсорбации веществ определяют по разнице между количеством их в первичной и конечной мочи. Величину канальцевой реабсорбции воды (RH2O) определяют по разнице между скоростью клубочковой фильтрации (СИП) и количеством конечной мочи и выражают в процентах по отношению к СКФ. RH 2 O = Сип - V / Сип × 100%

В обычных условиях величина реабсорбции составляет 98-99%. Для оценки функции проксимальных канальцев определяют величину максимальной реабсорбции глюкозы (Tmg), увеличивая ее концентрацию в плазме крови до предела, что значительно превышает пороговую. Tmg = Сип × Pg - Ug × V , где Сип - СКФ; Рg - концентрация глюкозы в крови Ug - концентрация глюкозы в моче; V - количество выделенной за 1 мин мочи. Средняя величина Tmg у мужчин составляет 34,7 ммоль / л. В возрасте после 40 лет Tmg уменьшается на 7% за каждые 10 лет жизни.