Гиалуроновая кислота химический состав. Гиалуроновая кислота для кожи и суставов: свойства, назначение, противопоказания. Роль в метастазировании

Гиалуронат, или гиалуроновая кислота, свойства и пользу которой рекламируют косметические компании, является основным средством, применяемым для омоложения кожи лица. Широкое распространение средств с ее содержанием заставляет многих задумываться о том, полезны ли процедуры и домашний уход с помощью таких препаратов, или они вредны для лица. Чтобы решить этот вопрос, нужно понять, что такое гиалуроновая кислота и как правильно выбрать косметику, чтобы получить прекрасный результат.

Гиалуроновая кислота в организме человека

Полисахарид — это химический термин, который подразумевает, что в состав вещества входят молекулы глюкозы. В гиалуронате они соединены в длинные цепочки. Молекула гиалуроновой кислоты может содержать до 25 000 одинаковых звеньев. При взаимодействии с особым белком (аггреканом) она приобретает способность связывать и удерживать в тканях молекулы воды.

Гиалуроновая кислота в организме человека входит в состав соединительной ткани: хрящей, сухожилий и т.п. Много гиалуроната содержится в стекловидном теле глаза, в синовиальной жидкости, где она обеспечивает вязкость среды. Вместе с волокнами коллагена и эластина вещество входит в структуру кожи, обеспечивая ее упругость и участвуя в процессах регенерации. Откуда берется гиалуроновая кислота, если ее еще не начали вводить во время косметических процедур?

Гиалуронат вырабатывается самим организмом. В теле взрослого человека общая масса этого вещества достигает 15 г. Но естественный синтез его замедляется после 25-летнего возраста, и процессы распада гиалуроната преобладают над его производством в организме. С течением времени доля кислоты в кожных покровах снижается, а ткани обезвоживаются. В дерме происходят изменения, которые внешне выглядят как морщины. Из-за снижения количества гиалуроната в других тканях возрастные изменения затрагивают весь организм.

Растения не вырабатывают гиалуроновую кислоту. Поэтому никакая диета с приемом пищи, содержащей соевые бобы, клетчатку или другие вещества, не влияет на выработку собственной кислоты в организме. Для омоложения кожи нужна та или иная косметическая процедура с применением препаратов гиалуроната.

Гиалуроновая кислота в косметологии

Применение гиалуроновой кислоты в косметологии основано на ее способности удерживать воду. Исследования ученых доказали, что сочетание гиалуроната и янтарной кислоты активизирует обмен веществ в тканях кожи, способствуя восстановлению ее клеток. Восстанавливающее действие гиалуроновой кислоты на кожу лица приводит не только к визуальному улучшению состояния кожи, но и обновляет ее на клеточном уровне. Чтобы убедиться в этом, нужно разобраться, как действует гиалуроновая кислота на кожу лица и зачем нужна та или иная процедура.

В качестве составляющей межклеточного вещества гиалуронат способствует движению лимфоцитов и фибробластов к местам повреждения кожи. При воспалительных явлениях, в случае мелкой травмы эти клетки обеспечивают борьбу с микроорганизмами и заживление тканей. Процессы регенерации состоят и в образовании большого количества волокон эластина и коллагена, которые и сохраняют упругость кожи.

В косметических кабинетах посетителям предлагают услуги, которые основаны на инъекционном введении препаратов гиалуроновой кислоты в кожные покровы. Результат всех процедур сводится к увеличению объема истонченной кожи, заполнению морщин, устранению кожных дефектов (рубцов от прыщей). Различают следующие виды использования гиалуроновой кислоты:

  • биоревитализация — для лечения угрей, послеродовых растяжек, восстановления кожи лица при возрастных изменениях;
  • мезотерапия — исправление дефектов кожи лица;
  • при редермализации в состав препаратов в качестве действующего вещества входят и гиалуроновая, и янтарная кислоты;
  • для биорепарации применяют филлеры с пептидами и витаминами;
  • заключается в восстановлении овала лица при помощи гиалуроновой кислоты;
  • контурная пластика применяется для изменения формы и объема отдельных частей лица (например, для ).

Кроме салонных методик существуют средства косметики, в состав которых входит низкомолекулярная гиалуроновая кислота. Они предназначены для ухода за кожей в домашних условиях. Чтобы получился желаемый эффект, а кожа была упругой и бархатистой, при использовании сыворотки или крема нужно соблюдать инструкцию к препарату.

Видео о плюсах и минусах использования гиалуроновой кислоты для лица

Когда нельзя применять средства с гиалуроновой кислотой?

От использования гиалуроновой кислоты и средств с ее содержанием иногда приходится отказываться. Это связано с особенностями получения вещества. Несмотря на современные способы очистки гиалуроновой кислоты, она способна вызвать аллергические реакции. Способность межклеточной среды к проведению полезных веществ и лимфоцитов внутри кожи может сыграть отрицательную роль и послужить способом перемещения инфекционных агентов или даже измененных клеток (когда в организме есть опухоли). Побочные эффекты могут возникнуть и от индивидуальной реакции организма, поэтому получать консультацию и проводить омолаживающее лечение лучше в крупных салонах, где работают сертифицированные специалисты.

При следующих состояниях:

  • острых инфекционных и воспалительных процессах;
  • сниженной свертываемости крови или при приеме антикоагулянтов;
  • аутоиммунных заболеваниях;
  • индивидуальной непереносимости препаратов с гиалуронатом;
  • аллергии;
  • беременности и кормлении грудью.

Нежелательно начинать процедуры, если менее 30 дней назад проводился пилинг лица (лазерный или химический).

Какая она бывает?

Производители выпускают множество препаратов с обозначениями, которые не всегда понятны потребителям их продукции.

Чтобы правильно выбрать средство для домашнего пользования или салонного ухода, надо иметь в виду, что виды гиалуроновой кислоты могут различаться по длине молекулы:

  1. Для лечения артрита, глазных болезней медики применяют среднемолекулярное вещество. Такая гиалуронка — скорее лекарство, чем косметика. Ее введение в организм стимулирует фибробласты и помогает организму начать продуцировать собственный гиалуронат.
  2. Низкомолекулярная гиалуроновая кислота состоит из коротких отрезков и входит в состав средств для домашнего применения: тоников или сывороток, эмульсий, кремов и т.д. Небольшие размеры частиц помогают им проникать в глубину дермы. С помощью лекарств на основе этой формы гиалуроната производят и лечение сложных заболеваний кожи (трофических язв, псориаза и т.п.). Недостатком является малый срок депонирования кислотного вещества: оно сохраняется в тканях всего 7-8 суток.
  3. В салонных процедурах чаще используется высокомолекулярная гиалуроновая кислота, состоящая из длинных полимерных цепочек. Она способствует гидратации кожи и удержанию влаги в ней. Введенная внутрь дермы, гиалуроновая кислота для лица более полезна, чем предыдущая, т.к. растворы на ее основе имеют большую вязкость и могут сохраняться в коже до 2 недель. После этого начинаются процессы ее деградации, и процедуры приходится повторять через 6-10 месяцев.

Различают разновидности гиалуроната и по способу производства. При выборе средства стоит поинтересоваться, из чего изготовлена гиалуронка. В настоящее время все реже применяется вещество, полученное из животных материалов (пупочных канатиков, петушиных гребешков, рыбы и т.п.). Его не удавалось качественно очистить от примесей белка, поэтому инъекции могли вызвать аллергическую реакцию или отторжение.

В настоящее время производители косметики выпускают биосинтезированный гиалуронат. Его получают благодаря деятельности микроорганизмов. с этим видом гиалуронки считаются гипоалергенными.

Система гиалуроновых кислот, применяемых в косметологии, включает в себя и такие виды, как:

  • стабилизированная, или нативная — биосинтезированные молекулы, прошедшие процесс сшивки, которые меньше подвергаются деградации в тканях человека;
  • нестабилизированная, т.е. лишенная этих качеств.

Из-за особенностей каждого типа косметология применяет их по-разному. Нестабилизированная гиалуроновая кислота для лица чаще находит применение для общего улучшения состояния кожи (в или при биоревитализации), для увлажняющих процедур. Стабилизированную форму применяют, чтобы моделировать контуры лица, восполнять объемы тканей на отдельных участках (для заполнения морщин и выравнивания складок). Сфера использования того или иного препарата зависит от степени стабилизации молекул: менее стабилизированные препараты рекомендуются для коррекции мелких морщин, более вязкие, с высокой стабилизацией — для выравнивания складок и провалов.

Потребительские свойства гиалуроновой кислоты разных видов различаются незначительно. Основное отличие — это срок ее сохранения под кожей до начала деградации и наличие или отсутствие вероятности возникновения побочных эффектов.

Препараты и средства с гиалуроновой кислотой

Производство гиалуроновой кислоты для лица и препаратов на ее основе осуществляется в разных странах. Несомненным лидером по выпуску косметики с омолаживающим эффектом является Корея. Именно корейская косметика подарила гиалуроновой кислоте нынешнюю популярность.

Гиалуроновая кислота от морщин применяется в виде наружных и внутренних средств. Среди препаратов можно выделить следующие разновидности:

  1. Крем или сыворотку могут применять девушки до 25-летнего возраста. Гиалуроновая кислота для лица в виде наружного средства, дополненного маслами растительного происхождения, может защищать кожу от пересыхания, но практически неспособна исправить дефекты дермы. Наружные средства могут помочь и от прыщей.
  2. Тем, кому за 30, омоложение гиалуроновой кислотой следует проводить при помощи инъекционных методов. При проведении процедуры косметолог введет филлер туда, где требуется заполнение морщин: гиалуроновой кислотой можно выровнять даже резкие носогубные, межбровные или лобные складки. Собирая и удерживая влагу, препарат разбухнет и разгладит кожу.
  3. Можно приобрести препарат и для приема внутрь. Пить гиалуроновую кислоту нужно в соответствии с инструкцией к средству: чаще всего по 1 таблетке или капсуле в день. Это лучшая методика для тех, кто боится уколов или не доверяет и другим орепроцедурам. Эффект от приема лекарств придется ждать 2-3 месяца, постоянно принимая средство.

Современная косметология применяет гиалуронат не только для кожи лица. Существует корейская косметика и (маски, сыворотки и пр.). Они действуют на волосы по той же схеме, по которой происходит увлажнение кожи лица гиалуроновой кислотой, т.е. создают защитную пленку, удерживая влагу внутри волоса. Широко применяются и специальные средства для мужчин (для увеличения полового органа).

Мифы о гиалуроновой кислоте

Из-за относительной новизны восстанавливающей косметики с гиалуронатом вокруг способов омоложения ходит большое количество разных мифов и домыслов. Часть их имеет под собой основания, но большинство являются неправдой. Один из таких — миф о том, что гиалуроновая кислота в косметологии является аналогом ботокса.

На самом деле, ботокс — это препарат, содержащий токсин бактерии ботулизма. Вещество расслабляет и парализует мышечные ткани, разглаживая морщины. Принцип действия гиалуроновой кислоты иной: вязкая жидкость просто заполняет пространство под кожей, выталкивая часть ее наружу. Качественные филлеры нетоксичны и абсолютно безопасны, т.к. гиалуронка распадается под воздействием ферментов человека до простых сахаров.

Женщины считают, что лучше не применять в зимние холода увлажняющие маски и кремы с содержанием гиалуроновой кислоты (для лица). Но именно зимой кожа подвергается воздействию сухого воздуха и на улице, и в помещении. Увлажняющие препараты необходимы, чтобы уберечь ее от шелушения и обезвоживания. Используя увлажняющее средство, нужно знать, что гиалуроновая кислота на кожу лица наносится за 30-40 минут до выхода на улицу. Средство успеет впитаться в дерму и предохранит ее от пересыхания.

Другой миф повествует о том, что из-за применения гиалуроната может повыситься внутриглазное давление. Это убеждение совершенно не обосновано, т.к. препараты не влияют на процессы в организме. Гиалуроновая кислота, функции которой состоят в накоплении и сохранении влаги, уже содержится внутри глаза и попасть туда из крема или филлера не может.

Многих интересует и вопрос о том, может ли быть аллергия на гиалуроновую кислоту. При выборе качественных препаратов, произведенных на основе биосинтезированной гиалуроновой кислоты, риск аллергических реакций сведен к минимуму. При этом не играет роли, какой тип вещества использовал производитель в своих средствах ухода: и низкомолекулярная, и высокомолекулярная гиалуронка имеют одинаковые побочные эффекты и противопоказания. Состав гиалуроновой кислоты не меняется, можно изменить только длину ее молекул. При применении кремов и сывороток аллергия чаще возникает из-за содержания сопутствующих веществ растительного и животного происхождения (масел, отдушек или экстрактов).

У потребителей вызывает сомнения и способность молекул проникать в дерму при нанесении препарата на кожу. Гиалуроновая кислота, которая применяется для изготовления таких средств ухода, обладает небольшими размерами молекул и беспрепятственно проникает в межклеточное пространство. Различие с инъекциями состоит в глубине проникновения: наружные средства способны увлажнить только верхние слои дермы. Поэтому их применение ограничено возрастом женщины.

Среди изобилия средств и методик их применения легко выбрать наилучший способ, подходящий каждой женщине. При выборе какого-то из них следует учесть и свой возраст, и противопоказания, которые могут способствовать аллергической реакции или вызвать другие неприятности. Перед проведением процедуры лучше всего посоветоваться с опытным специалистом-косметологом.

Гиалуроновая кислота (ГК), также известная как (соль кислоты) или гиалуронан (объединяющее обозначение для кислоты и ее соли), представляет собой анионный натуральный полисахарид (несульфированный простейший гликозаминогликан), который является важным компонентом нервной, эпителиальной, соединительной тканей и основным ингредиентом внеклеточного матрикса.

Гиалуроновая кислота также входит в состав многих, присущих живым организмам биологических жидкостей (синовиальная жидкость, слюна и пр.). Данное вещество может продуцироваться некоторыми бактериями (например, стрептококками ) и выделяться из органов животных (гребень петуха, стекловидное тело и хрящевая ткань рогатого скота).

В человеческом теле массой около 70-ти килограмм в среднем содержится примерно 15 граммов этой эндогенной кислоты, третья часть которой ежесуточно подвергается преобразованию (расщепляется или синтезируется).

Структура и строение

Структурная схема ГК характерна для линейного полисахарида, состоящего из чередующихся остаточных частей N-aцетил-D-гликозамина и D-глюкуроновой кислоты , последовательно соединенных гликозидными связями β-1,3 и β-1,4.

Одна молекула данной кислоты может включать до 25 тысяч подобных дисахаридных звеньев. ГК природного происхождения обладает молекулярной массой варьирующей в пределах 5000-20000000 Да. У человека среднее значение молекулярной массы находящегося в синовиальной жидкости полимера равняется 3140000 Да.

Молекула кислоты энергетически стабильна, в том числе вследствие стереохимии дисахаридов входящих в ее состав. В пиранозном кольце объемные заместители расположены в стерически выгодных позициях, тогда как меньшие по объему атомы водорода размещены в менее выигрышных аксиальных положениях.

Образование: Окончил Винницкий национальный медицинский университет им. Н.И.Пирогова, фармацевтический факультет, высшее фармацевтическое образование – специальность «Провизор».

Опыт работы: Работа в аптечных сетях «Конекс» и «Биос-Медиа» по специальности «Фармацевт». Работа по специальности «Провизор» в аптечной сети «Авиценна» города Винница.

Комментарии

Я тоже кстати гиалуронку в таблетка принимаю. Кстати, у Эвалара хорошая, да, но там эффект накопительный, надо 2 месяца пить и не забывать

Было много проблем с кожей:шелушилась, трескалась, стали появляться морщины. Из-за этого решила попробовать гиалуроновую кислоту в таблетках, да так и осталась ее пить. Уже 6 курсов прошла, с кожей стало гораздо лучше, даже холода теперь не страшны.

Спасибо за хорошую статью. Сама принимаю гиалуронку уже давно. Пробовала и крем, и инъекции, но остановилась на таблетках. Думаю, что это все-таки самое практичное, что создали.

В данном историческом обзоре, посвященном гиалуроновой кислоте , мы постарались привлечь внимание посетителя вебсайта к наиболее важным открытиям и исследованиям, на которых строились все последующие работы в области изучения этого уникального полисахарида. Выбор данных и источников для обзора является полностью субъективным.

ВВЕДЕНИЕ

В настоящий момент никаких принципиально новых данных о гиалуроновой кислоте не существует, поэтому мы решил сделать темой этой небольшой статьи «Гиалуроновая кислота - история». При существующем в настоящее время темпе движения научной мысли далеко не каждый человек имеет достаточно времени для того, чтобы оглянуться назад и просмотреть данные литературы, в которой описаны ключевые открытия в области гиалуроновой кислоты , поэтому мы постарались кратко изложить существующие результаты. Выбор источников и данных основан только на наших знаниях и мнении, поэтому может расходиться с взглядами других людей.

КАК ВСЕ НАЧИНАЛОСЬ

Венгерский ученый Bandi Balazs эмигрировал из Венгрии в 1947 году. Приехав в Швецию, он начала работать в Стокгольме над проблемой биологической роли внеклеточных полисахаридов, причем особенно много внимания он уделял именно гиалуронату .

В те годы культуральная работа с клетками выглядела совсем по-другому. До появления антибиотиков все манипуляции выполнялись в строго стерильных условиях близких к условиям в операционной. Клетки растили на подвешенных сгустках фибрина. Фибробласты выделялись из измельченных куриных сердец, кусочки которых клались на фибриновые сгустки, а скорость роста культуры определялась по изменению площади колонии, которая указывала на скорость и расстояние миграции клеток.

Одним из первых открытий было выделение из ткани пуповины гиалуроната для того, чтобы затем вводить его в культуру фибробластов.

Гиалуронат выделялся из пуповинной крови и преципитировался в спирту. Затем его очищали от белков путем встряхивания экстракта в смеси хлороформа и изоамилового спирта (по методу Sewag). Была предпринята попытка разработать метод стерилизации вязкого раствора гиалуроната. Его нельзя было подвергать фильтрации, поэтому в конечном итоге ученые пришли к использованию автоклавирования.

В самом начале работы было сделано три очень важных наблюдения, которые заложили основу для дальнейших исследований.

Во-первых, удалось выделить гиалуронат из ткани пуповины, причем при разных ионных условиях был получен материал с различной степенью вязкости. Самая высокая вязкость была у раствора, приготовленного на дистиллированной воде. Ученые предположили, что вязкость раствора гиалуроната может колебаться в зависимости от значения рН и ионной силы растворителя. Сейчас это уже знает каждый, однако на тот момент этот феномен был описан Raymond Fuoss только для растворов синтетических полиэлектролитов. В журнале «Journal of Polymer Chemistry» была опубликована статья "The viscosity function of hyaluronic acid as a polyelectrolyte" (Показатель взякости гиалуроновой кислоты как полиэлектролита). С этого момент ученые вплотную занялись исследованиями физических и химических свойств гиалуроната.

Во-вторых, при попытке простерилизовать гиалуронат с помощью УФ-излучения он полностью утратил вязкость в растворе. В дальнейшем было показано, что при воздействии потока электронов гиалуронат также полностью подвергается деградации. Сейчас уже можно сказать, что то наблюдение было одним из первых описаний свободнорадикального расщепления гиалуроната.

В-третьих, исследовались и биологические эффекты гиалуроната и ряда сульфатированных полисахаридов - гепарина, гепарансульфата (который в те годы назывался «гепарин-односерной кислотой») и синтетически сульфатированного гиалуроната. Ученые сравнили их влияние на рост культуры клеток, антикоагулянтную активность и антигиалуронидазную активность. Главной задачей было выяснить действительно ли гепарин представляет собой сульфатированный гиалуронат, как это утверждалось в работах Asboe-Hansen, однако был сделан вывод, что это утверждение было ошибочно.

Гиалуронат, в отличие от сульфатированных полисахаридов, ускорял рост клеток и это, пожалуй, было одно из первых описаний взаимодействия гиалуроната с живыми клетками - сегодня мы знаем, что это взаимодействие опосредовано клеточным рецептором. Интересно, что это было также одно из первых исследований, посвященных изучению биологической активности гепарансульфата.

Все вышесказанные исследования были выполнены в короткий промежуток времени, начиная с сентября 1949 по декабрь 1950, то есть заняли лишь немногим больше 1 года.

ОТКРЫТИЕ ГИАЛУРОНАТА И ГИАЛУРОНИДАЗЫ

Karl Meyer открыл гиалуронат в 1934 году во время работы в глазной клинике в Университете штата Колумбия. Он выделил это соединение из стекловидного тела глаза коровы в кислых условиях и назвал его гиалуроновой кислотой от греческого hyalos - стекловидный и уроновой кислоты, которая входила в состав этого полимера. Сразу следует сказать, что до этого были выделены и другие полисахариды (хондроитинсульфат и гепарин). Более того, еще в 1918 году Levene and Lopez-Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-ионов. Тогда его назвали мукоитин-серной кислотой, однако в настоящее время он боле известен как гиаулуронат, который в их работе был выделен с небольшой примесью сульфата.

В течение следующих десяти лет Karl Meyer и еще целый ряд авторов выделили гиалуронат из различных тканей. Так, например, он был обнаружен в суставной жидкости, пуповине и ткани петушиного гребня. Самым интересным было то, что в 1937 году Kendall удалось выделить гиалуронат из капсул стрептококков. В дальнейшем практически из всех тканей организма позвоночных был выделен гиалуронат.

Еще до открытия гиалуроната Duran-Reynals обнаружил в семенниках некий биологически активный фактор. В дальнейшем его стали называть «распространяющийся фактор». Похожим действием обладали яд пчел и медицинских пиявок. При его введении подкожно в смеси с тушью отмечалось очень быстрое распространение черного окрашивания. Этим фактором оказался фермент, разрушающий гиалуронаты , который в дальнейшем назвали гиалуронидазой . Даже в крови млекопитающих присутствует определенное количество гиалуронидаз, но их активация происходит только при кислотных значениях рН.

ВЫДЕЛЕНИЕ ГИАЛУРОНАТА

Самый первый метод выделения гиалуроната был стандартным протоколом для выделения полисахаридов, то есть по методу Sewag или с помощью протеаз из экстракта удалялся весь белок. Затем полимер преципитировался на фракции добавлением этилового спирта.

Большим шагом вперед стало разделение разнозаряженных полисахаридов, которое разработал John Scott при исследовании методов преципитации с катионным детергентом (ЦПХ, цетилпиридинхлоридом), в котором изменялась концентрация солей. Гиалуронат с высокой эффективностью отделялся от сульфатированных полисахаридов. Этим методом также можно было пользоваться и для фракционирования по молекулярной массе. По своей сути, схожие результаты могут быть получены при использовании метода ионно-обменной хроматографии.

СТРУКТУРА И КОНФОРМАЦИЯ ГИАЛУРОНАТА

Химическая структура полисахаридной молекулы была расшифрована Karl Meyer и его коллегами в 1950-е. Сейчас все знают, что гиалуронат является длинной полимерной молекулой, состоящей из дисахаридных звеньев, компонентами которых являются N-ацетил-D-глюкозамин и D-глюкуроновая кислота, связанные между собой В1-4 и В1-3 связями. Karl Meyer не пользовался стандартным методом для исследования структуры интактного полисахарида. Вместо этого он проводил гиалуронидазное расщепление полисахарида, получив смесь дисахаридов и олигосахаридов, которую ему удалось полностью охарактеризовать. На основании полученных им результатов он и сделал свой вывод о возможной структуре исходной полимерной молекулы.

Конформационный анализ «волокон», состоящих из гиалуроната был впервые предпринят с использованием метода рентгеновской кирсталлографии. На конференции в г. Турку в 1972 году шли горячие споры между группами специалистов о том, имеет ли гиалуронат спиральную структуру или нет. Очевидно, что гиалуронат может формировать спирали различной структуры в зависимости от ионного состава растворителя и доли воды в нем. В 70-е и 80-е годы в литературе появлялись самые различные версии структуры гиалуроната.

Прорывом в этой области стала работа John Scott. Опираясь на то, что гиалуронат обладает малой реакционной способностью при пероксидазном окислении в водном растворе, он сделал вывод о том, что в воде он принимает конформацию с внутрицепочечными водородными связями. В дальнейшем его гипотеза нашла свое подтверждение при ЯМР-анализе, а в 1927 году Atkins с соавторами охарактеризовали конформацию как двойную спиральную.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Пятьдесят лет назад не была известна химическая структура гиалуроната и его макромолеуклярные свойства - масса, гомогенность, форма молекулы, степень гидратированности и взаимодействия с прочими молекулами. В последние 20 лет это стало объектом внимания A. G. Ogston и его сотрудников в Оксфорде, доктора Balazs с коллегами в Бостоне, Torvard С Laurent, работающего в Стокгольме, и еще нескольких лабораторий.

Основной проблемой являлось выделение гиалуроната, очищенного от белков и прочих компонентов, которое необходимо проводить перед любыми физическими методами исследования. Всегда имеется риск деградации полимерной структуры в процессе очистки. Ogston использовал технику ультрафильтрации, предположив, что свободные белки преодолеют фильтр, а белки, связанные с гиалуронатом , будут задержаны фильтром. Объектом исследования стал комплекс с содержанием белка равным 30%. Другие авторы пытались использовать разнообразные методы физической, химической и ферментативной очистки, которые позволяли снижать содержание белка до нескольких процентов. В то же время результаты физико-химического анализа дали более полное описание молекулы гиалуроната . Ее молекулярный вес близок к нескольким миллионам, хотя разброс между образцами был достаточно высок. Рассеивание света показало, что молекула ведет себя как случайным образом скрученная, достаточно плотно упакованная цепь с радиусом изгиба порядка 200 нм. Упакованность и малоподвижность цепи связана с наличием внутрицепочечных водородных связей, о которых уже говорилось выше. Случайно скрученная структура полностью соответствует полученному соотношению вязкости и молекулярной массы вещества. Ogston и Stanier использовали методы седиментации, диффузии, разделения в зависимости от градиента скорости сдвига и вязкости а также метод двойного преломления, которые показали, что молекула гиалуроната имеет форму высоко гидратированной сферы, что вполне отвечает известным свойствам молекул с упаковкой в виде случайно скрученной спирали.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Единственно возможным путем количественного исследования гиалуроновой кислоты было выделение полисахарида в чистом виде и измерение содержания в нем уроновой кислоты и/или N-ацетилглюкозамина. Методами выбора в данном случае являлись карбазольный методы Дише для оценки содержания уроновой кислоты и реакция Эльсона-Моргана на уровень гексозамина.

В данном случае трудно переоценить важность использования карбазольного метода. При анализе гиалуроната иногда приходилось использовать миллиграммы вещества.

Следующим шагом стало открытие специфичных ферментов. Гиалуронидаза грибов Streptomyces действовала только на гиалуронат , при этом образовывались ненасыщенные гекса- и тетрасахариды. При анализе содержания гиалуроната можно было использовать это свойство грибов, особенно при наличии в среде других полисахаридов и примесей, а ненасыщенная форма гиалуроновой кислоты может использоваться для снижения лимита обнаружения продукта. Ферментативный метод значительно повысил чувствительность обнаружения гиалуроната, доведя ее до уровня микрограммов.

Последним этапом стало использование аффинных белков, специфично связывающихся с гиалуронатом. Tengblad использовал гиалуронат-связывающие белки из хрящей, а Delpech в дальнейшем использовал гиалуронектин, выделенный из головного мозга. Эти белки могут использоваться при анализе по аналогии с иммунологическими методами, а после разработки этого метода точность количественного определения гиалуроната возросла до уровня нанограммов, что позволило определять содержание гиалуроната в образцах тканей и физиологических жидкостях. Метод Tengblad стал основой для большей части работ Uppsala, выполненных позже.

ВИЗУАЛИЗАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в срезах тканей тесно связано с анализом полимеров в тканевой жидкости. С самого начала использовались методы неспецифического окрашивания со стандартными красителями. John Scott удалось повысить специфичность по такому же принципу, которым он руководствовался при разработке метода фракционирования анионных полисахаридов в детергентах. Он окрашивал их красителем алциановый синий в разных ионных концентрациях, при этом ему удалось добиться различимого окрашивания разных полисахаридов. В дальнейшем он перешел на использование купромеронового синего.

В то же время гиалуронат можно хорошо выявлять на срезах ткани с помощью специфично связывающихся с ним белков. Первые сообщения о таком методе были опубликованы в 1985. Этот метод использовался с большим успехом и, благодаря ему, были получены ценные данные о распределении содержания гиалуроната в разных органах и тканях.

Гиалуронат также может быть обнаружен при электронной микроскопии. На первых изображениях, которые были опубликованы Jerome Gross к сожалению, не удалось увидеть каких-либо тонких деталей структуры. Первой хорошо объяснявшей результаты работой можно считать статью Fessler и Fessler. В ней было указано, что гиалуронат имеет протяженную одноцепочечную структуру.

Затем Robert Fraser описал еще один изящный метод визуализации околоклеточно расположенного гиалуроната . Он добавлял суспензию частиц гиалуроната к культуре фибробластов. Частицы не были обнаружены в толстом слое, окружающем культуру фибробластов. Таким образом было показано, что в околоклеточном пространстве имеется гиалуронат, подвергающийся расщеплению под действием гиалуронидазы.

ЭЛАСТИЧНОСТЬ И РЕОЛОГИЯ

Исходя из размеров одной из самых крупных молекул гиалуроната , несложно предположить, что при концентрации порядка 1 г/л они практически полностью насыщают раствор. При высоких концентрациях молекулы перепутываются, а раствор представляет собой некую сеть из цепей гиалуроната. Точка полимеризации определяется достаточно легко - это момент насыщения раствора, после которого его вязкость резко увеличивается по мере увеличения концентрации. Еще одним свойством раствора, которое зависит от его концентрации является скорость сдвига вязкости. Это явление описали Ogston и Stanier. Эластические свойства раствора изменяются по мере нарастания концентрации и молекулярной массы полимеров. Текучесть чистого гиалуроната была впервые определена Jensen и Koefoed, и более подробный анализ вязкости и эластичности раствора был выполнен Gibbs et al.

Является ли такое интересное поведение раствора следствием сугубо механического переплетения цепочек полимеров или оно связано и с их химическим взаимодействием? В ранних работах, опубликованных Ogston, обсуждались возможные взаимодействия, опосредованные через белки. Welsh с соавторами получил указания на существование взаимодействий цепочек между собой. Это было достигнуто путем добавления коротких цепочек гиалуроната (60 дисахаридов) к раствору, что вызывало уменьшение его эластичности и вязкости. Очевидно, что при этом происходило конкурентное взаимодействие коротких и длинных цепей. В более поздних работах John Scott было показано, что конформация гиалуроната с наличием гидрофобных связей между цепочками хорошо соответствовала склонности гиалуроната к формированию спиралей с находящимися рядом молекулами, которые стабилизировались гидрофобными связями. Таким образом, наиболее вероятным является межцепочечное взаимодействие, которое во многом и определяет реологические свойства гиалуроната .

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГИАЛУРОНОВЫХ ПОЛИМЕРОВ

Открытие переплетение цепочек гиалуроната при нарастании концентрации, которое может происходить в тканях, стало основой для предположения, что гиалуронат может быть задействован во многих физиологических процессах за счет создания большой трехмерной сети цепочек. Обсуждались самые разнообразные свойства таких сетей.

Вязкость. Очень высокая вязкость концентрированных растворов гиалуроната, а также зависимость сдвига от вязкости, могут быть использованы для суставной смазки. Гиалуронат всегда присутствует во всех пространствах, разделяющих подвижные элементы организма - в суставах и между мышц.

Осмотическое давление. Осмотическое давление растворов гиалуроната в значительной мере зависит от их концентрации. При высоких концентрациях коллоидно-осмотическое давление такого раствора оказывается выше, чем у растворов альбуминов. Это свойство может быть использовано в тканях для поддержания гомеостаза.

Сопротивление потоку . Плотная сеть цепочек является достаточно хорошим препятствием току жидкости. Гиалуронат действительно может формировать препятствия для тока жидкости в тканях, что впервые было показано Day.

Исключенный объем. Трехмерная сеть цепочек вытесняет из раствора все остальные макромолекулы. Доступный объем может быть измерен в опыте диализного уравнивания раствора гиалуроната и буферного раствора, при этом оказалось, что полученный эффект совпал с расчетным по данным теоретических исследований, проведенных Ogston. Эффект исключения обсуждался в связи с разделением белка, содержащегося в сосудистом русле и внеклеточном пространстве, однако он также рассматривался и в качестве механизма накопления физиологических и патологических молекул в соединительной ткани. Исключение полимеров снижает растворимость многих белков.

Диффузионный барьер. Движение макромолекул через раствор гиалуроната может быть измерено при седиментационном и диффузионном анализе. Чем больше молекула тем ниже будет скорость ее движения. Этот эффект связали с формированием в тканях диффузионных барьеров. Например, околоклеточный слой гиалуроната может защищать клетки от воздействия макромолекул, выделяемых другими клетками.

ГИАЛУРОН-СВЯЗЫВАЮЩИЕ БЕЛКИ (ГИАЛАДГЕРИНЫ)

Протеогликаны. До 1972 года считалось, что гиалуронат является инертным соединением и не взаимодействует с другими макромолекулами. В 1972 Hardingham и Muir показали, что гиалуронат может связываться с протеогликанами хрящевой ткани. Исследования Hascall и Heinegard показали, что гиалуронат может специфично связываться с N-концевым доменом глобулярной части протеогликанов и соединительных белков. Данная связь является достаточно прочной и на одну цепь гиалуроната могут садиться несколько протеогликанов, в результате чего в хряще и иных тканях формируются крупные агрегации молекул.

Рецепторы гиалуроната. В 1972 Pessac и Defendi и Wasteson с соавторами показали, что суспензии некоторых клеток начинают агрегировать при добавлении гиалуроната. Это было первым сообщением, указывавшим на специфичное связывание гиалуроната с поверхностью клеток. В 1979 Underhill и Toole показали, что гиалуронат действительно связывается клетками, а в 1985 году был выделен отвечающий за это взаимодействие рецептор. В 1989 году сразу 2 группы авторов опубликовали работы, в которых было показано, что рецептор хоуминга лимфоцитов CD44 обладает способностью связываться с гиалуронатом в хрящевой ткани. Вскоре было показано, что рецептор, выделенный Underhill и Toole был полностью идентичен CD44. Еще одним гиалуронат -связывающим белком, выделенным позднее из супернатанта культуры клеток 3T3 в 1982 году Turley с соавторами оказался РГРП (рецептор гиалуроната, опосредующий подвижность). После этих работ был открыт еще целый ряд гиаладгеринов.

РОЛЬ ГИАЛУРОНАТА В КЛЕТКЕ

Вплоть до открытия гиаладгеринов считалось, что гиалуронат оказывает влияние на клетки только за счет физических взаимодействий. Данные о том, что гиалуронат может играть роль в биологических процессах были единичными и, в большинстве своем, были построены на отсутствии или наличии гиалуроната при разных биологических процессах. Многие из спекуляций того времени были построены на методах неспецифического гистологического окрашивания.

В начале 1970-х в Бостоне было выполнено очень интересное исследование. Bryan Toole и Jerome Gross показали, что во время регенерации конечности у головастиков гиалуронат синтезируется в самом начале, а затем его количество уменьшается под действием гиалуронидазы, при этом происходит замещение гиалуроната хондроитинсульфатом. Таким же образом развиваются события и при формировании роговицы у цыпленка. Toole указал, что накопление гиалуроната совпадает с периодами миграции клеток в ткани. Как уже было сказано выше, Toole также провел первые исследования мембранно-связанных гиаладгеринов, а с открытием рецепторов гиалуроната у нас есть все больше оснований полагать, что гиалуронат играет роль регуляции клеточной активности, например, при движении клеток. В последние 10 лет можно наблюдать всплеск числа публикаций, посвященных роли гиалуроната в миграции клеток, митозе, воспалении, опухолевом росте, ангиогенезе, оплодотворении и т.д.

БИОСИНТЕЗ ГИАЛУРОНАТА

Исследования биосинтеза гиалуроната можно условно разделить на 3 фазы. Первым автором и наиболее выдающимся ученым в первую фазу был Albert Dorfman. Он и его коллеги еще в начале 50-х описали источник моносахаридов, которые встраивались в гиалуроновые цепочки стрептококков. В 1955 году Glaser и Brown впервые показали возможность синтеза гиалуроната отдельной синтетической системой вне клетки. Они использовали фермент, выделенный из клеток куриной саркомы Rous и вводили в состав гиалуроновых олигосахаридов меченую изотопом 14С УТФ-глюкуроновую кислоту. Группа Dorfman также выделила молекулы-предшественники УТФ-глюкуроновой кислоты и УТФ-N-ацетилглюкозамина из экстракта стрептококков, а также синтезировала гиалуронат , пользуясь для этого ферментативной фракцией, выделенной из стрептококков.

Во второй фазе стало понятно, что гиалуронат должен синтезироваться по пути, отличному от гликозаминогликанов. Синтез гиалуроната, в отличие от сульфатированных полисахаридов, не требует активного синтеза белка. Ответственная за это синтаза расположена в мембране протопласта бактерий и плазматической мембране эукариотических клеток, но не в аппарате Гольджи. Синтетический аппарат, предположительно расположен на внутренней стороне мембраны, так как он оказался нечувствительным к воздействию внеклеточных протеаз. Кроме того, гиалуроновая цепочка пронизывает мембрану, так как воздействие на клетки гиалуронидазы усиливало продукцию гиалуроната . В 80-ые годы были предприняты несколько безуспешных попыток выделить синтазу из эукариотических клеток.

В начале 90-ых было показано, что гиалуронат -синтаза является фактором вирулентности стрептококков группы А. Взяв эти данные за основу, две группы авторов смогли определить ген и локус, отвечающий за синтез гиалуроновой капсулы. Вскоре удалось и клонировать ген этой синтазы и полностью его просеквенировать. Гомологичные белки, выделенные в последние годы у всех позвоночных, дали ценную информацию о ее строении. Важной областью исследования может стать изучение механизмов регуляции активности этой синтазы.

МЕТАБОЛИЗМ И ДЕГРАДАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в крови, а также его переноса от тканей по лимфатической системе стало основой для проведения совместного исследования, проводившегося доктором Robert Fraser в Мельбурне и лабораторией в г. Уппсала. Следовые количества полисахарида, меченого тритием по ацетильной группе были обнаружены в крови после введения его кроликам и людям, а метка соединения исчезала с периодом полувыведения равным нескольким минутам. Вскоре стало понятно, что большая часть радиации была накоплена печенью, где полимер быстро подвергался расщеплению. Меченая тритием вода обнаруживалась в крови через 20 минут. Авторадиограммы показали, что накопление радиации происходило также в селезенке, лимфоузлах и костном мозге. Методом фракционирования клеток было также показано, что в печени накопление происходило в основном в эндотелии синусов, что было позднее подтверждено при исследовании in vitro и при радиографии in situ. На этих клетках имеется рецептор для эндоцитоза гиалуроната, который принципиально отличается от прочих гиалуронат-связывающих белков. Далее полисахарид расщепляется в лизосомах. Исследования гиалуроната проводились и в других тканях, и теперь существует цельная картина метаболизма этого полисахарида.

В последнее время еще один аспект катаболизма гиалуроната стал объектом большого числа исследований. Из работ Gunther Kreil (Австрия) и Robert Stern и его коллег (Сан-Франциско) стали известны структуры и свойства различных гиалуронидаз. Эти данные стали основой для исследований, прояснивших биологическую роль этих ферментов.

ГИАЛУРОНАТ ПРИ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЯХ

С самого начала интерес ученых был прикован к свойствам гиалуроната, содержащегося в суставной жидкости, особенно к изменению его уровня при заболеваниях суставов. Было также показано, что гиперпродукция гиалуроната наблюдается при целом ряде заболеваний, например, при злокачественных опухолях - мезотелиомах, однако в то время еще не существовало достаточно точных и чувствительных методов обнаружения гиалуроната. Такая ситуация имела место вплоть до 1980 годов, когда были разработаны новые аналитические методики, что вновь привлекло интерес ученых к колебаниям содержания гиалуроната при разных заболеваниях. Были определены содержание гиалуроната в крови в норме и при патологии, особенно при циррозе печени. При ревматоидном артрите содержание гиалуроната в крови возрастало при физических нагрузках, особенно по утрам, что давало объяснение симптому «утренней скованности» в суставах. При различных воспалительных заболеваниях уровень гиалуроната в крови повышался как местно, так и системно. Органные дисфункции также могли быть объяснены накоплением гиалуроната, что вызывало интерстициальные отеки тканей.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Основной прорыв в медицинском использовании гиалуроната целиком является заслугой д-ра Balazs. Он разработал основные положения и идеи, первым синтезировал форму гиалуроната, которую хорошо переносили больные, продвигал идею промышленного производства гиалуроната и популяризовал идею применения полисахаридов в качестве лекарственных средств.

В 50-ые годы Balazs сконцентрировал усилия на изучении состава стекловидного тела и начал проводить опыты с заменителями для возможного протезирования при лечении отслойки сетчатки. Одним из наиболее серьезных препятствий на пути применения гиалуроновых протезов стала высокая сложность выделения чистого гиалуроната, свободного от всех примесей, вызывающих воспалительную реакцию.

Balazs разрешил эту проблему и получившийся в итоге препарат получил название НВФ-NaГУ (невоспалительная фракция гиалуроната натрия). В 1970 гиалуронат был впервые введен в суставы беговым лошадям, страдавшим от артритов, причем был получен клинический выраженный ответ на лечение с уменьшением симптомов заболевания. Двумя годами позже Balazs смог убедить руководство компании Pharmacia AB в г. Уппсала начать производство гиалуроната для использования в клинической и ветеринарной практике. Miller и Stegman по совету д-ра Balazs начали использовать гиалуронат в составе имплантируемых внутриглазных линз и гиалуронат быстро стал одним из самых употребительных компонентов в хирургической офтальмологии, получив торговое название Healon®. С того момента были предложены и испытаны многие другие варианты использования гиалуроната. Его производные (например, поперечно структурированные гиалуронаты ) также были испытаны для использования в клинике. Особенно хочется отметить, что еще в 1951 году Balazs уже сообщал о биологической активности самых первых из полученных тогда производных гиалуроната.

ЗАКЛЮЧЕНИЕ

В данном докладе нам удалось охватить лишь основные и наиболее значимые события в истории исследования гиалуроната, и еще многие другие интересные факты и данные будут обсуждаться на нашем веб-сайте. Из представленных статей будет ясно, что исследования гиалуроната становятся все более актуальными и необходимыми. Сегодня ежегодно в научной литературе публикуется от 300 до 400 статей, посвященных гиалуронату .

Первая международная конференция, целиком посвященная гиалуронату, проводилась в г. Сен-Тропез в 1985 году, после чего были проведены конгрессы в Лондоне (1988), Стокгольме (1996) и Падуе (1999).

Рост интереса связан, во многом, с успешными работами Endre Balazs, который сделал очень много в области исследования свойств гиалуроната, получил самые первые данные о нем, указал на возможность клинического применения гиалуроната и является вдохновителем, подвигающим научное сообщество на новые исследования.

Текст: Адэль Мифтахова

Даже далёкому от мира косметики человеку сложно было не заметить, что в последние годы словосочетание «гиалуроновая кислота» звучит из каждого утюга. При этом используют её самыми разными способами и в пластической, и глазной хирургии, и для лечения суставов, и в форме инъекций и кремов, и даже пьют в виде БАД и напитков. Мы попросили автора Telegram-канала Don’t Touch My Face Адэль Мифтахову разобраться, как и почему гиалуроновая кислота покорила мир и в чём, собственно, её сила.

Первое упоминание о гиалуроновой кислоте относится к 1934 году, когда биохимик Карл Мейер опубликовал статью об обнаруженном им в стекловидном теле глаз коров полисахариде с крайне высокой молекулярной массой. С тех пор было проведено огромное количество исследований этого вещества, а в 2009 году в специализированном журнале International Journal of Toxicology вышла монументальная статья, суммирующая результаты этих исследований и признавшая гиалуроновую кислоту любого происхождения и её производные безопасными для использования . Первое время гиалуроновую кислоту добывали преимущественно из гребней петухов и она имела исключительно животное происхождение. К счастью, позже было открыто несколько методов синтеза гиалуроновой кислоты в промышленных объёмах с помощью бактерий, которые вырабатывают её в определённых условиях.

Несмотря на своё название гиалуроновая кислота - это не кислота в бытовом её понимании, она не имеет растворяющих или отшелушивающих свойств, как, например, гликолевая. Сама по себе гиалуроновая кислота является естественным компонентом тел млекопитающих, она присутствует во множестве тканей, но наибольшая её концентрация встречается в соединительной ткани суставов. В самом простом понимании гиалуроновая кислота - это сахар, но если молекулярная масса столового сахара около 340 дальтонов (Да), то гиалуроновой кислоты - от 600 тысяч до нескольких миллионов Да. Благодаря своей структуре и большой молекулярной массе её молекулы способны удерживать количество воды, во много раз превышающее их собственное. Именно поэтому в нашем теле гиалуроновая кислота выполняет очень важную функцию сохранения воды в тканях, а также выступает смазывающим веществом для суставов.

Главный миф о гиалуроновой кислоте гласит: размер молекул не позволяет
ей проникать глубоко в кожу

В современной медицине гиалуроновая кислота признана эффективным средством для лечения артрита при введении её напрямую в сустав и используется в глазной хирургии при лечении катаракты и замене роговицы. В последнее время производители также выпускают большое количество пищевых добавок с гиалуроновой кислотой, но её эффективность при приёме внутрь до сих пор не доказана . Как косметический ингредиент гиалуронка (так ласково прозвали вещество обыватели) стала применяться с 80-х годов прошлого века и сегодня используется главным образом двумя способами: как увлажняющий компонент косметики и как филлер при контурной пластике лица, то есть для разглаживания морщин, придания дополнительного объёма и коррекции формы губ, скул и других зон лица.

Магия гиалуроновой кислоты, благодаря которой она и прославилась на весь мир, заключается в её способности притягивать и удерживать воду так, как это не делает ни одно другое вещество. Её молекула - это соединение глюкуроновой кислоты и N-ацетилглюкозамина. Она содержит большое количество кислорода и гидроксильных групп, что позволяет ей формировать сильные водородные связи с водой. Проще говоря, каждая молекула гиалуроновой кислоты - это крошечная губка, которая удерживает воду, что делает её уникальным средством для увлажнения кожи и тканей.

Однако полезные свойства гиалуроновой кислоты не ограничиваются одним лишь увлажнением. С возрастом наш организм вырабатывает всё меньше и меньше гиалуроновой кислоты, этот факт в своё время послужил поводом для её исследования в качестве антивозрастного компонента. Действительно, немецкие дерматологи заметили значительное уменьшение морщин и повышение эластичности кожи при использовании геля гиалуроновой кислоты на поверхности кожи. Исследователи Центра дерматологии и лазерной косметологии из Южной Каролины также доказали эффективность солей гиалуроновой кислоты в лечении себорейного дерматита и раздражений. Впрочем, все эти исследования не объясняют главного - каким именно образом гиалуроновая кислота лечит кожу; учёным только предстоит разобраться во всех тонкостях её воздействия.


На фоне растущего с каждым годом выбора гиалуроновых лосьонов, кремов и сывороток гиалуронка неизбежно обросла множеством мифов. Так, самый популярный из них гласит: ухаживающая косметика с гиалуроновой кислотой не работает, потому что размер её молекул не позволяет ей проникать глубоко в кожу. И в теории это действительно так. Диаметр молекулы гиалуроновой кислоты - около 3000 нм, в то время как расстояние между клетками кожи не превышает 50 нм. Однако, авторы блога The BeautyBrains рассказывают о том, что водоудерживающим компонентам совершенно необязательно проникать в кожу для того, чтобы увлажнять её верхние слои. Для этого им просто нужно находиться на поверхности кожи длительное время - и этого будет вполне достаточно.

Ещё более интересно то, что в 1999 году сотрудники отделения биохимии и молекулярной биологии австралийского Университета Монаша исследовали способности проникновения гиалуроновой кислоты в кожу на мышах и на людях с помощью радиоактивной метки. В результате было доказано , что молекулы гиалуроновой кислоты не только проникают в верхние слои кожи, но и достигают дермы, подкожной жировой клетчатки, а её следы были обнаружены даже в крови.

В последние годы учёные разработали метод получения солей гиалуроновой кислоты - sodium hyaluronate и potassium hyaluronate. Их также иногда называют низкомолекулярной, или гидролизованной гиалуроновой кислотой. Эти соли получают путём удаления из молекулы гиалуроновой кислоты липидов, протеинов и нуклеиновых кислот с сохранением её водоудерживающей способности. В результате размер молекулы значительно уменьшается (до 5 нм), что позволяет веществу проникать в кожу легче, чем обычная гиалуроновая кислота, и увлажнять её на глубоком уровне. Более того, многочисленные исследования способности проникновения солей гиалуроновой кислоты в кожу доказали : они способны не только сами проникать в глубокие слои кожи и увлажнять её, но и выступать в качестве проводника для других веществ.

Если эффективность гиалуронки в увлажнении кожи любого типа доказана, то её антивозрастные и лечебные свойства учёным ещё предстоит изучить

Несмотря на то, что гиалуроновая кислота и её производные имеют доказанную безопасность, в редких случаях при её использовании на коже может проявляться аллергия. Как и при любой другой аллергической реакции, все эксперименты в такой ситуации нужно прекратить. Да, обидно, но, к счастью, гиалуроновая кислота не единственный водоудерживающий компонент, который добавляют в косметику. Аналогичными свойствами обладают глицерин, мочевина, AHA-кислоты в низких концентрациях и некоторые другие . Они также способны удерживать воду, пусть и в гораздо меньшем объёме, чем гиалуроновая кислота, но зато и стоят существенно дешевле.

Другой популярный способ применения гиалуронки в косметологии - инъекции. Сразу оговоримся, что все инвазивные процедуры должен назначать дерматолог, он же расскажет о том, что именно показано и противопоказано конкретно вам. Мы же расскажем о том, какие методики с участием гиалуроновой кислоты в принципе существуют. Одна из самых популярных процедур - это мезотерапия и, в частности, которая призвана повысить уровень увлажнённости кожи, стимулировать выработку коллагена и эластина, а также разгладить мелкие морщинки.


Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Гиалуроновая кислота представляет собой полимерную молекулу, состоящую из небольших соединений углеводной структуры. Данное соединение было открыто около 75 лет назад, и до сей поры интенсивно изучается химиками, биологами, фармацевтами, врачами и учеными других медико-биологических специальностей. Физические свойства гиалуроновой кислоты уникальны – она способна удерживать молекулы воды , образуя гелеобразную структуру, и кроме того, данное соединение участвует во многих важных процессах в организме человека и животных, таких, как например деление и миграция клеток, переключение генов, заживление ран, оплодотворение, рост и развитие плода, формирование злокачественных опухолей и т.д.

В настоящее время гиалуроновая кислота широко применяется в эстетической медицине (входит в состав косметических продуктов, таких, как крема, маски и другие, а также используется для проведения процедуры биоревитализации и иных манипуляций, направленных на замедление процессов старения и поддержание молодости тканей). Кроме эстетической области, гиалуроновая кислота широко используется в медицинской практике, например, в лечении заболеваний глаз и суставов, в комплексной терапии злокачественных опухолей, в заживлении ран и в иммунологии. Рассмотрим свойства и применение гиалуроновой кислоты в различных сферах (и эстетической, и медицинской).

Гиалуроновая кислота – общая характеристика, свойства и способы получения

Гиалуроновая кислота представляет собой полисахарид, а это означает, что ее молекула состоит из множества одинаковых небольших фрагментов, которые по своей структуре являются углеводами (простыми сахаридами). Простые сахара соединяются в цепочку и образуют длинную молекулу гиалуроновой кислоты. В зависимости от количества фрагментов, составляющих молекулу гиалуроновой кислоты, она может иметь различную массу и длину.

На основании массы молекулы выделяют две разновидности гиалуроновой кислоты – высокомолекулярную и низкомолекулярную . Высокомолекулярными разновидностями гиалуроновой кислоты являются молекулы с массой более 300 кДа. Все молекулы гиалуроновой кислоты с массой менее 300 кДа относятся к низкомолекулярным. Обе разновидности вещества обладают рядом одинаковых свойств, но в то же время некоторые другие физические свойства и биологическая роль высокомолекулярной и низкомолекулярной гиалуроновой кислот различны.

Так, и высокомолекулярная, и низкомолекулярная гиалуроновая кислота способны связывать и удерживать молекулы воды, образуя желеобразную массу. Данная желеобразная масса обладает некоторой вязкостью, позволяющей ей выполнять функцию идеального субстрата для любых жидкостей и смазок в организме (например, слюны, вагинальной и суставной смазки, околоплодных вод и т.д.), а также для внеклеточного матрикса, в котором протекают биохимические реакции и проходят другие важные процессы. Степень вязкости желеобразной массы, образуемой гиалуроновой кислотой, зависит от ее массы. Чем больше молекулярная масса молекулы гиалуроновой кислоты, тем более вязким будет желеобразная масса, образуемая ей в соединении с водой.

Внеклеточный матрикс, образованный желеобразной массой воды, удерживаемой гиалуроновой кислотой, представляет собой уникальную среду, соединяющую клетки органов и систем между собой, а также обеспечивающую их взаимодействие. По межклеточному матриксу движутся клетки и биологически активные вещества, попав в него из кровеносных сосудов. Именно благодаря желеобразному вязкому матриксу различные вещества могут добираться до каждой клетки органа или ткани, даже если рядом с ней не проходит кровеносный сосуд. То есть, какое-либо вещество или клетка выходит из кровеносного сосуда в межклеточный матрикс и по нему проходит до клеточных структур, лежащих глубоко в тканях и не контактирующих с кровеносными сосудами.

Кроме того, продукты жизнедеятельности клеток, токсины вирусов и бактерий , а также погибшие клеточные структуры удаляются из органов и тканей именно через межклеточный матрикс. Сначала они попадают в межклеточное вещество, затем движутся по нему по направлению к лимфатическим или кровеносным сосудам, достигнув которых, проникают в них и окончательно выводятся из организма. Подобное движение между клетками в межклеточном матриксе возможно именно благодаря его желеобразной консистенции, обеспечиваемой гиалуроновой кислотой.

Помимо этого, гиалуроновая кислота является необходимым компонентом внутрисуставной смазки и глазной жидкости, а также входит в состав дермы и соединительной ткани. Данное соединение придает вязкость внутрисуставной смазке и глазной жидкости, обеспечивая их оптимальные свойства. В дерме гиалуроновая кислота удерживает волокна коллагена и эластина в правильном положении, тем самым поддерживая тургор, эластичность и молодость кожи . Кроме того, за счет связывания воды гиалуроновая кислота обеспечивает оптимальное количество влаги в кожном покрове, что также предотвращает старение и появление морщин . В соединительной ткани гиалуроновая кислота также обеспечивает ее тургор, эластичность, растяжимость и достаточную увлажненность.

При недостатке гиалуроновой кислоты происходит пересыхание тканей из-за дефицита воды, которая не удерживается в них. В результате ткани истончаются, становятся ломкими, неэластичными и легко ломающимися, что приводит к их старению и развитию различных заболеваний. Также гиалуроновая кислота принимает участие в ряде очень важных процессов, таких, как миграция и размножение клеток, переключение генов, зачатие и последующий рост плода, формирование злокачественных опухолей, развитие иммунного ответа и т.д. Таким образом, переоценить свойства гиалуроновой кислоты, необходимые для нормального функционирования органов и тканей на клеточном уровне, просто невозможно.

В организме человека с массой тела 70 кг постоянно имеется около 15 граммов гиалуроновой кислоты. Причем ежедневно примерно 1/3 от общего количества гиалуроновой кислоты, находящейся в различных органах и тканях, расщепляется и утилизируется, а вместо нее образуются новые молекулы. Время полужизни молекул гиалуроновой кислоты в составе суставной смазки составляет от 1 до 30 недель, в эпидермисе и дерме – 1 – 2 дня, а в крови – несколько минут. С возрастом организм теряет способность синтезировать гиалуроновую кислоту в необходимом количестве, вследствие чего начинается процесс старения. Именно поэтому для замедления старения людям зрелого возраста необходимо получать гиалуроновую кислоту извне, с продуктами питания или с биологически активными добавками (БАДами).

Для применения в медицине и эстетической индустрии гиалуроновую кислоту получают в промышленных масштабах из двух видов сырья:
1. Ткани позвоночных животных;
2. Бактерии, образующие защитную капсулу из молекул гиалуроновой кислоты (например, гемолитические стрептококки типов А и В).

Для получения гиалуроновой кислоты наиболее часто используют следующие ткани позвоночных животных, которые содержат наибольшие количества данного вещества:

  • Гребни петухов;
  • Стекловидное тело глаза;
  • Синовиальная жидкость суставов;
  • Гиалиновый хрящ;
  • Пупочный канатик;
  • Эпидермис и дерма кожи;
  • Амниотическая жидкость.
Оптимальным сырьем для получения гиалуроновой кислоты являются гребни половозрелых кур и петухов.

Бактерии для получения гиалуроновой кислоты используются следующим образом – необходимый штамм помещают на питательную среду и обеспечивают ему идеальные условия для размножения. Когда питательная среда становится вязкой, это означает, что бактерии выработали достаточно большое количество гиалуроновой кислоты, которую нужно только выделить и очистить от примесей.

Гиалуроновая кислота, выделяемая из животного сырья и бактерий, имеет существенный недостаток – она содержит примеси белков и пептидов , которые невозможно удалить полностью даже после специальной обработки. Данные белки и пептиды могут провоцировать аллергические реакции у людей, что суживает сферу применения гиалуроновой кислоты.

Готовая гиалуроновая кислота выпускается фармацевтическими заводами в виде порошков и гранул, содержащих молекулы с различной массой. Данные порошки используют для приготовления растворов, которые затем вносят в состав кремов, масок, лекарственных препаратов и т.д. Перед применением готовые растворы гиалуроновой кислоты стерилизуют в автоклавах.

Биологическая роль гиалуроновой кислоты

Гиалуроновая кислота является полисахаридом с высокой степенью гидратированности (связанности с водой) и входит в состав межклеточного матрикса, благодаря чему обладает весьма разнообразными функциями и принимает участие в процессах размножения, миграции, узнавания и дифференцировки клеток различных органов и тканей.

В зависимости от количества и размеров молекул гиалуроновой кислоты в межклеточном матриксе формируются гели различной степени вязкости, которые в дальнейшем определяют свойства и функции тканей, органов, систем. Так, гели, образованные гиалуроновой кислотой, определяют количество воды в ткани, интенсивность обмена ионами в клетках (калия, натрия, магния, цинка и др.), скорость транспорта различных биологически активных веществ и токсинов, непроницаемость среды для молекул крупного размера и клеток и т.д.

Способность гиалуроновой кислоты делать какой-либо участок гелевой среды межклеточного матрикса непроницаемым для крупных молекул обеспечивает тканям защиту от токсинов и проникновения микробов (бактерий, простейших и грибков).

Удержание большого количества воды гиалуроновой кислотой создает эффекты несжимаемости и набухания, на основе которых реализуется эффективное противостояние различным механическим воздействиям, направленным на сдавление тканей и органов. Благодаря этому органы и ткани сохраняют свою форму и не поддаются сдавливанию, а, следовательно, и травматизации. Именно благодаря этому эффекту гиалуроновой кислоты мы можем, например, сдавливать кожу пальцами, не повреждая ее структур.

Вязкость суставной жидкости, создаваемая гиалуроновой кислотой, позволяет ей выступать в роли смазки для трущихся хрящевых поверхностей двух сочленяющихся костей, а также уменьшать негативное воздействие избыточного давления .

Именно водный раствор гиалуроновой кислоты является наполнителем стекловидного тела глаза, а также составной частью других структур данного органа. Гиалуроновая кислота очень важна для нормальной работы глаза, поскольку ее растворы прозрачны и стабильны, что и создает необходимую среду для прохождения луча света на сетчатку без каких-либо искажений.

Гиалуроновая кислота играет огромную роль в оплодотворении яйцеклетки. Дело в том, что выходя из яичника в период овуляции , яйцеклетка покрыта двумя защищающими ее структурами, которые называются блестящая оболочка (zonapellucida) и лучистый венец (coronaradiata). И блестящая оболочка, и лучистый венец в межклеточном матриксе содержат большое количество гиалуроновой кислоты, благодаря которой они, собственно, и существуют. Яйцеклетка способна к оплодотворению только до тех пор, пока ее лучистая корона и блестящая оболочка полностью целы. Как только лучистая корона разрушится в маточной трубе , яйцеклетка потеряет способность к оплодотворению и погибнет. Таким образом, при недостатке гиалуроновой кислоты в организме даже здоровые и полноценные яйцеклетки могут быть бесполезными, поскольку они быстро погибают в маточной трубе, будучи не способными к оплодотворению сперматозоидами.

Кроме того, после оплодотворения остатки блестящей оболочки с гиалуроновой кислотой предотвращают прилипание уже плодного яйца к стенкам маточной трубы, что является механизмом профилактики внематочной беременности .

Гиалуроновая кислота также играет огромную роль в последующем после оплодотворения росте плода. Дело в том, что целые молекулы и фрагменты гиалуроновой кислоты запускают процесс деления, миграции и созревания клеток в плодном яйце, а также формирования из них органов и систем.

Внутри клеток гиалуроновая кислота принимает участие в процессе деления, то есть, необходима для размножения и образования новых клеточных элементов взамен старых или поврежденных. Благодаря этому эффекту гиалуроновая кислота стимулирует процесс восстановления повреждений в органах и тканях. Например, при переломах костей именно гиалуроновая кислота стимулирует быстрое срастание фрагментов. Стимуляция процессов репарации происходит не только за счет активации клеточного деления, но и за счет способности гиалуроновой кислоты активировать рост кровеносных сосудов, которые необходимы вновь формирующейся ткани. К сожалению, способность гиалуроновой кислоты стимулировать рост кровеносных сосудов может играть и негативную роль, например, при росте злокачественной опухоли. Ведь чем быстрее образуются новые сосуды, питающие опухоль, тем быстрее она увеличивается в размерах, и тем скорее дает метастазы.

Также гиалуроновая кислота является компонентом врожденного иммунитета , которым обладает каждый человек с момента рождения. В коже и соединительной ткани гиалуроновая кислота выполняет целый ряд очень важных функций благодаря тому, что поддерживает нити коллагена и эластина в нормальном положении и состоянии. Так, данная молекула защищает кожу, предотвращая проникновение патогенных микробов с ее поверхности вглубь при наличии повреждений (ранки, царапины и т.д.). Кроме того, гиалуроновая кислота поддерживает гидробаланс дермы и эпидермиса, уменьшая испарение воды и одновременно способствуя притягиванию и удержанию на поверхности кожи влаги из воздуха. Благодаря подобным свойствам гиалуроновая кислота увлажняет кожу, а также делает ее гладкой и эластичной, предотвращая повреждения, истончение и иссушение, и, тем самым, замедляя старение.

Обобщая вышесказанное, можно резюмировать, что все разновидности гиалуроновой кислоты обладают следующими свойствами:

  • Поддерживает и восстанавливает нормальную степень гидратации (увлажненности) кожного покрова;
  • Улучшает эластичность тканей, в том числе кожи;
  • Нормализует тонус тканей, в том числе кожи;
  • Улучшает микроциркуляцию;
  • Ускоряет процесс обновления клеток во всех тканях, в том числе в коже;
  • Купирует воспаление и устраняет отек кожи.
Однако описанные эффекты в полной мере присущи не всем разновидностям гиалуроновой кислоты. Так, высокомолекулярные виды гиалуроновой кислоты обладают одними эффектами, а низко- и среднемолекулярные – другими.

Низкомолекулярные разновидности гиалуроновой кислоты , имеющие массу менее 30 кДа, обладают следующими свойствами:

  • Проходят сквозь барьеры, образованные мембранами клеток, вследствие чего могут проникать с поверхности кожи в глубокие слои дермы;
  • Стимулируют рост лимфатических и кровеносных сосудов;
  • Улучшают микроциркуляцию и питание кожи.
Среднемолекулярные разновидности гиалуроновой кислоты , имеющие массу от 30 до 100 кДа, обладают следующими свойствами:
  • Ускоряют заживление ран;
  • Стимулируют деление клеток;
  • Ускоряют миграцию клеток в рану.
Высокомолекулярные разновидности гиалуроновой кислоты , имеющие массу молекул от 500 до 730 кДа, обладают следующими свойствами:
  • Подавляют деление и миграцию клеток в область повреждения;
  • Не проникают с поверхности кожи в глубокие слои;
  • Подавляют рост лимфатических и кровеносных сосудов;
  • Купируют воспаление;
  • Предотвращают разрушение хрящей.

Сферы применения гиалуроновой кислоты

Гиалуроновая кислота широко применяется в эстетической сфере и в прикладной медицине в таких областях, как офтальмология , артрология, в онкологии , в заживлении ран и в иммунологии. Рассмотрим способы применения гиалуроновой кислоты в различных сферах.

Гиалуроновая кислота в эстетической сфере

Современную эстетическую медицину и косметологию невозможно представить без гиалуроновой кислоты, поскольку она применяется очень широко. Так, в косметологии гиалуроновая кислота входит в состав различных кремов, сывороток, масок, гелей и других продуктов, предназначенных для увлажнения, омоложения или уменьшения выраженности возрастных изменений кожного покрова.

В эстетической медицине гиалуроновая кислота является наиболее популярным средством, применяющимся для омоложения кожи, а также устранения возрастных изменений и дефектов по типу "минус-ткань", возникших после хирургических вмешательств. Гиалуроновая кислота используется в инъекционных методиках омоложения, таких, как вживление филлеров, биоревитализация и мезотерапия. Широкое применение данного соединения в инъекционных методах эстетической медицины обусловлено рядом факторов: во-первых, введение гиалуроновой кислоты в кожу безопасно, поскольку аллергические реакции на препарат не возникают; во-вторых, имплантат из длинной молекулы "гиалуронки" сохраняется длительное время, то есть, эффект от произведенной процедуры держится от 1 до 1,5 лет. Наконец, инъекции гиалуроновой кислоты просты в производстве и безболезненны.

Таким образом, очевидно, что гиалуроновая кислота является очень важным компонентом современных косметических средств и необходимым веществом для целого ряда методов нехирургического омоложения кожи. Рассмотрим подробнее, каким образом гиалуроновая кислота применяется в косметических продуктах и используется в методах нехирургического омоложения кожи.

Инъекции с гиалуроновой кислотой (уколы гиалуроновой кислоты)

Под общим названием "инъекции гиалуроновой кислоты" обычно подразумевают несколько методов нехирургического омоложения кожи и устранения выраженности ее возрастных изменений, которые объединены общей сущностью их производства – введением препаратов "гиалуронки" в структуры кожного покрова методом уколов (инъекций). То есть, гиалуроновая кислота вводится в кожу методом инъекций обычным шприцем или специальным роллером. После инъекций гиалуроновой кислоты, произведенных любым методом, кожа человека разглаживается, морщины либо полностью исчезают, либо их выраженность становится меньшей, появляется тургор и устраняется дряблость, а также повышается степень увлажненности структур кожного покрова. Ведь старение кожи, появление морщин, дряблость, сухость и тусклость обусловлены именно дефицитом или уменьшением количества гиалуроновой кислоты в глубоких слоях кожи, и поэтому ее ведение является эффективным способом омоложения и устранения сухости.

К методам, объединенным общим названием "инъекции гиалуроновой кислоты", относят следующие процедуры:

  • Биоревитализация;
  • Биорепарация;
  • Контурная пластика филлерами.
Указанные процедуры "инъекций" отличаются друг от друга разновидностями применяемой для их производства гиалуроновой кислоты, техникой вколов, а также показаниями и противопоказаниями к применению.

Так, мезотерапия производится по принципу "редко, мало, в нужное место". То есть, гиалуроновую кислоту вводят в малых количествах только в те области, которые нуждаются в коррекции (например, в область морщин и т.д.). Кроме того, принцип "редко" означает, что инъекции производятся один раз в несколько дней. Мезотерапия имеет накопительный эффект из-за того, что гиалуроновая кислота вводится в малых количествах, и поэтому для получения хорошего результата необходимо произвести несколько инъекций в один и тот же участок. Эффект мезотерапии сохраняется в течение нескольких месяцев.

Биоревитализация производится при помощи тех же техник вколов (папульной, трассирующей, канальной), что и мезотерапия, но используются большие количества высокомолекулярной гиалуроновой кислоты. Поэтому биоревитализация производится за один раз. Данная процедура дает немедленные и отсроченные результаты. Немедленные результаты представляют собой разглаживание морщин, что заметно сразу после проведения процедуры. Однако данный немедленный эффект держится примерно 1 – 2 недели, после чего исчезает. Далее введенная в кожу гиалуроновая кислота разрушается специальными ферментами, и образуются короткие фрагментарные молекулы. Данные молекулы стимулируют выработку собственной гиалуроновой кислоты, коллагена и эластина, что и является основной целью процедуры биоревитализации, поскольку в результате данного процесса происходит реставрация и омоложение кожи. Именно реставрация структур стареющей кожи является отдаленным результатом биоревитализации, что проявляется улучшением тонуса, исчезновением дряблости, уменьшением количества и глубины морщин. Отдаленные результаты биоревитализации сохраняются в течение 1 – 1,5 лет.

Биорепарация представляет собой процедуру, аналогичную биоревитализации. Однако биорепарация отличается от биоревитализации тем, что для ее производства используются комплексные препараты, содержащие помимо гиалуроновой кислоты витамины , минералы и другие биологически активные вещества. В результате введения в структуры кожи гиалуроновой кислоты, витаминов и минералов достигается длительный и выраженный эффект омоложения, а также устраняются небольшие неровности и дефекты кожного покрова (например, шрамы, следы от прыщей и т.д.).

Контурная пластика филлерами представляет собой введение специальных длинных сшитых между собой нитей высокомолекулярной гиалуроновой кислоты в определенные участки кожи, которым требуется коррекция. Данные нити называются филлерами и располагаются на проблемных участках. Благодаря введению филлеров можно скорректировать линию скул, овал лица, устранить мешки под глазами и т.д.

Все методы инъекций гиалуроновой кислоты производятся под местным обезболиванием, поэтому сами процедуры безболезненные. Однако после того, как действие местного обезболивающего препарата закончится, возможны легкие болезненные ощущения в течение 2 – 4 дней, а также сохранение отека и покраснений на коже.

Увеличение губ гиалуроновой кислотой

Данная процедура является частным вариантом инъекций гиалуроновой кислоты, которые производятся в область контура губ. Когда гиалуроновая кислота в виде филлеров вводится в губы, она заполняет ткани и притягивает воду, что и приводит к увеличению их объема, а также делает контур более четким и красивым. В результате губы становятся более полными, пухлыми и гладкими с четким контуром, а также приобретают сочную окраску. Достигнутый результат сохраняется примерно 8 – 18 месяцев.

В ходе процедуры в губы вводится небольшой объем гиалуроновой кислоты путем точечных вколов. В зависимости от количества введенной гиалуроновой кислоты объем губ можно увеличить умеренно или существенно. Чем больше будет введено "гиалуронки", тем сильнее увеличится объем губ.

Сама процедура продолжается полчаса и проводится под местным обезболиванием, а полный результат формируется через двое суток. После увеличения губ гиалуроновой кислотой в течение 2 – 7 дней может сохраняться отек, покраснение и болевые ощущения, которые затем полностью проходят.

Гиалуроновая кислота под глаза

Гиалуроновая кислота может использоваться для устранения морщин и темных кругов под глазами, а также для придания тонкой коже данной области эластичности, упругости и повышения степени ее увлажненности. Гиалуроновая кислота под глаза может применяться как в виде инъекций, так и в составе специальных кремов, сывороток, гелей или муссов, содержащих ее в качестве активного компонента.

Показания и противопоказания для инъекций гиалуроновой кислоты (в том числе с целью увеличения губ)

Инъекции гиалуроновой кислоты различными методами показаны в следующих случаях:
  • Сухая и обезвоженная кожа;
  • Дряблая кожа на лице, животе, бедрах и плечах;
  • Морщинки в области глаз, овала лица и декольте;
  • Круги под глазами;
  • Тусклый и нездоровый цвет лица;
  • Расширенные поры на коже лица;
  • Повышенная выработка кожного сала;
  • Подтяжка овала лица;
  • Улучшение линии скул;
  • Устранение морщин;
  • Увеличение количества влаги в коже;
  • Повышение эластичности и тургора кож;
  • Нормализация рельефа кожи;
  • Увеличение объема и улучшение контура губ.
Инъекции гиалуроновой кислоты противопоказаны в следующих случаях:
  • Непереносимость или аллергические реакции на гиалуроновую кислоту;
  • Период беременности и кормления грудью ;
  • Острый период любых острых и инфекционных заболеваний;
  • Аутоиммунные заболевания;
  • Патология соединительной ткани;
  • Злокачественные опухоли;
  • Гипертоническая болезнь;
  • Склонность к образованию рубцов на коже;
  • Диабетическая ангиопатия ;
  • Нарушения свертывания крови;
  • Наличие воспалений или родинок в области предполагаемых вколов;
  • Заболевания кожи;
  • Прием препаратов, влияющих на свертываемость крови (антикоагулянтов , антиагрегантов и т.д.).

Препараты для инъекций гиалуроновой кислоты

В настоящее время для инъекций гиалуроновой кислоты используются разнообразные препараты, произведенные в разных странах и предназначенные для различных целей. Ниже в таблице мы приводим список основных высококачественных сертифицированных препаратов гиалуроновой кислоты с указанием показаний для их применения и длительностью достигнутого эффекта.
Препарат гиалуроновой кислоты Показания к применению препарата Длительность достигнутого эффекта
Varioderm Коррекция средних и глубоких морщин
Коррекция контура губ
6 – 12 месяцев
Varioderm Fineline Устранение поверхностных морщин
Коррекция "гусиных лапок"
Коррекция красной каймы губ
6 – 12 месяцев
Varioderm Plus Коррекция глубоких морщин
Коррекция овала лица
6 – 12 месяцев
Varioderm Subdermal Коррекция очень глубоких морщин
Увеличение объема тканей
6 – 12 месяцев
Hylaform (Hylan-B age) Коррекция формы губ
12 месяцев
Hyalite (Puragen) Коррекция формы губ
Устранение носогубных складок
12 месяцев
Teosyal Global Action Коррекция средних морщин 12 месяцев
Teosyal Deep Lines Коррекция глубоких морщин и складок кожи 12 месяцев
Teosyal Kiss Коррекция объема и контура губ 12 месяцев
Prevelle 3 – 6 месяцев
Captique Коррекция тонких и средних морщин 3 – 6 месяцев
Repleri Коррекция средних и глубоких морщин 12 – 18 месяцев
Juvederm Ultra 6 – 8 месяцев
Juvederm Ultra Plus Коррекция средних или глубоких морщин и складок 6 – 12 месяцев
Sirgiderm 18 Коррекция тонких морщин 6 месяцев
Sirgiderm 30 Устранение глубокой кожной депрессии
Восполнение дефицита объема тканей
9 месяцев
Sirgiderm 24 XP Устранение умеренной кожной депрессии
Коррекция контура губ
9 месяцев
Sirgiderm 30 XP Устранение глубокой и умеренной кожной депрессии
Восполнение дефицита объема тканей
Коррекция контура и формы губ
9 месяцев
Belotero Basic Устранение шрамов
Коррекция глубоких и средних морщин или борозд
Коррекция контуров лица
Увеличение объема и коррекция контура губ
6 – 9 месяцев
Belotero Soft Коррекция тонких поверхностных морщин 6 – 9 месяцев
Jolidermis 24 + Коррекция глубоких мимических морщин
Коррекция и восстановление контура губ
6 – 9 месяцев
Jolidermis 24 Коррекция средних и глубоких мимических морщин 6 – 9 месяцев
Jolidermis 18 Коррекция мелких морщин 6 – 9 месяцев
Restylane Коррекция умеренных морщин 6 – 12 месяцев
Restylane Lipp Увеличение объема губ
Коррекция красной каймы губ
6 – 12 месяцев
Restylane Perlane Коррекция глубоких складок
Коррекция овала лица
6 – 12 месяцев
Restylane SubQ Устранение возрастного дефицита объема тканей
Устранение асимметрии мягких тканей
12 – 18 месяцев
Restylane Touch Коррекция очень тонких морщин (в том числе в области орбиты глаза и рта) 6 месяцев
Эвгулон В Коррекция мелких и глубоких морщин и постакне 6 месяцев
Гиалуформ Коррекция тонких морщин 6 – 7 месяцев
Гиалуформ 1,8% Коррекция средних морщин и складок 8 – 9 месяцев
Гиалуформ 2,5% Устранение дефицита объема тканей 6 – 8 месяцев
Гиалрипайер-0,1 Коррекция мелких и глубоких морщин 10 – 14 месяцев

Гиалуроновая кислота до и после – фото


На данной фотографии изображен эффект, достигнутый инъекциями гиалуроновой кислоты, произведенными по методу биоревитализации.


На данной фотографии изображен эффект инъекций гиалуроновой кислоты препаратом Restilane.

Губы после гиалуроновой кислоты – фото



На данной фотографии изображен эффект увеличения объема губ при помощи гиалуроновой кислоты.

Крем, сыворотка и маски с гиалуроновой кислотой

Различные крема, маски, сыворотки и другие косметические продукты с гиалуроновой кислотой предназначены для наружного применения с целью увлажнения кожи, а также уменьшения степени выраженности возрастных изменений. Косметические средства с гиалуроновой кислотой подтягивают кожу, уменьшают ее дряблость, купероз и размер расширенных пор, а также выравнивают цвет лица и улучшают рельеф кожного покрова. Однако для того, чтобы получить видимый эффект от косметических средств с гиалуроновой кислотой, их необходимо применять регулярно минимум в течение месяца.

Выбирая косметическое средство, необходимо ориентироваться на количество и качество гиалуроновой кислоты в нем. Так, в сыворотках содержится наиболее высокая концентрация гиалуроновой кислоты, поэтому данные косметические средства рекомендуется выбирать для ухода за кожей, находящейся в плохом состоянии, а также для получения максимально быстрого эффекта. Сыворотки с гиалуроновой кислотой рекомендуется применять на начальном этапе, а затем переходить на использование кремов с гиалуроновой кислотой.

В кремах может содержаться высокомолекулярная или низкомолекулярная гиалуроновая кислота. Высомолекулярная гиалуроновая кислота в составе кремов покрывает кожу невидимой пленкой, из которой впитывается в верхние слои эпидермиса, делая его увлажненным, подтянутым, с ровным и сияющим цветом. Низкомолекулярная гиалуроновая кислота способна всасываться с поверхности в глубокие слои кожи, в которых стимулирует выработку коллагена и эластина, что приводит к более выраженному и стойкому эффекту. Однако крема, содержащие низкомолекулярную гиалуроновую кислоту, стоят гораздо дороже косметических средств с высокомолекулярной формой "гиалуронки". Поэтому для коррекции поверхностных возрастных изменений оптимально использовать крема с высокомолекулярной гиалуроновой кислотой. Соответственно, для коррекции и уменьшения выраженности глубоких возрастных изменений необходимо применять крема с низкомолекулярной гиалуроновой кислотой.

Маски с гиалуроновой кислотой применяются по тем же принципам, что и крема. Крема и сыворотки можно применять ежедневно, а маски – 1 – 2 раза в неделю. Все средства с гиалуроновой кислотой необходимо использовать только при плюсовой температуре, поскольку на морозе ее молекулы кристаллизуются и могут поранить кожу. Поэтому в зимнее время рекомендуется наносить средства с гиалуроновой кислотой только вечером, когда уже не планируется выход на улицу.

Однако необходимо помнить, что косметические средства с гиалуроновой кислотой не рекомендуется применять людям младше 25 лет, поскольку это может спровоцировать обратный эффект. Дело в том, что у молодых женщин кожа сама вырабатывает достаточное количество гиалуроновой кислоты и не нуждается в интенсивном уходе, а потому постоянное поступление данного вещества извне может привести к тому, что кожный покров перестанет ее вырабатывать. В результате наступит преждевременное старение кожи.

В настоящее время крема, сыворотки, маски и другие косметические средства выпускаются многими фирмами, поэтому приобрести их не составляет проблем. Одними из лучших косметических средств с гиалуроновой кислотой являются крема, маски, муссы и сыворотки, произведенные европейскими, азиатскими и американскими фирмами.

Препараты гиалуроновой кислоты для кожи лица: применение (инъекция), эффекты, возможные осложнения, рекомендации дерматокосметолога - видео

Кремы и инъекции с гиалуроновой кислотой: как они действуют, в каких случаях применяются - видео

Кремы для увлажнения сухой кожи: с гиалуроновой кислотой, с плёнкообразующими веществами, с гидроксикислотами - видео

В чем разница между эффектами от крема, сыворотки и уколов гиалуроновой кислоты (ответ косметолога) - видео

Гиалуроновая кислота для суставов

В здоровых суставах обязательно содержится небольшое количество жидкости, которая выполняет роль смазки. В этой жидкости имеется гиалуроновая кислота, которая придает ей необходимые свойства. При различных заболеваниях суставов концентрация гиалуроновой кислоты в суставной жидкости снижается в 2 – 4 раза. Поэтому в настоящее время успешно применяется метод лечения заболеваний суставов, заключающийся во введении высокомолекулярной гиалуроновой кислоты в его полость.

При введении гиалуроновой кислоты в сустав при остеоартрозах купируется болевой синдром и улучшается его функциональная активность, что позволяет человеку нормально двигаться и вести привычный образ жизни. Кроме того, применение гиалуроновой кислоты восстанавливает свойства внутрисуставной жидкости, подавляет воспалительный процесс и стимулирует восстановление нормальной структуры тканей.

В настоящее время при заболеваниях суставов применяют следующие препараты гиалуроновой кислоты:

  • Вискорнеал форто;
  • Вискосил;
  • Синвиск (Гилан G-F 20);
  • Синокром;
  • Суплазин;
  • Остенил.
Следует помнить, что чем больше молекулярная масса гиалуроновой кислоты, вводимой в сустав, тем длительнее терапевтический эффект. Поэтому для получения длительного лечебного действия необходимо выбирать препараты, содержащие гиалуроновую кислоту с наиболее высокой молекулярной массой.

Гиалуроновая кислота в офтальмологии

Препараты гиалуроновой кислоты широко применяются в местном и системном лечении заболевания глаз . Так, гиалуроновая кислота входит в состав глазных капель "искусственная слеза", предназначенных для лечения сухости роговицы. Также "гиалуронка" применяется для проведения хирургических операций на глазах с целью создания оптимальной операционной среды и предохранения тканей от случайных повреждений.

Гиалуроновая кислота в заживлении ран

Гиалуроновая кислота подавляет воспалительный процесс и активизирует процессы восстановления нормальной структуры тканей, благодаря чему успешно применяется в заживлении ран, ожогов и трофических язв . Для заживления ран гиалуроновую кислоту вводят в специальный перевязочный материал, которым покрывают различные повреждения кожного покрова, и периодически меняют повязки.

Биоэксплантаты с гиалуроновой кислотой (тонкая пленка) применяются для покрытия швов на кишечнике после произведенных оперативных вмешательств, что существенно ускоряет заживление раны и восстановление тканей. Кроме того, биоэксплантаты с гиалуроновой кислотой используются в ходе лапароскопических операций для покрытия петель кишечника с целью предупреждения их случайного травмирования.

Гиалуроновая кислота – отзывы

Большинство отзывов о гиалуроновой кислоте (от 85 до 90%) в косметических средствах являются положительными, что обусловлено видимым эстетическим эффектом. В отзывах указывается, что салонные процедуры с гиалуроновой кислотой весьма эффективно увлажняют кожу, делают ее более гладкой и упругой, вследствие чего мелкие морщинки разглаживаются, а новые не образуются. Кроме того, во многих отзывах указывается, что применение кремов с гиалуроновой кислотой приводит к тому же эффекту, что и салонные процедуры, но только медленнее. Если эффект от салонной процедуры заметен сразу, то при использовании кремов или масок он появляется только через месяц.