Закон изменения и сохранения полной механической энергии. Механическая энергия. Закон сохранения механической энергии. Применение закона

где – внешняя результирующая сила, приложенная к системе. Важным примером систем с переменной массой являются ракеты, которые движутся вперед за счет выбрасывания назад сгоревших газов; при этом ракета ускоряется силой, действующей на нее со стороны газов. Масса М ракеты все время уменьшается, т.е. dM / dt < 0. 2)Уравнение Мещерского. Уравнение Мещерского - основное уравнение в механике тел переменной массы Основной закон динамики поступательного движения тела переменной массы, уравнение Мещерского, имеет вид- ma=Fреакт+Fвнешн А формула Циолковского такова: V=U*ln m0/m 3)Реактивное движение. Реактивное движение - это движение, которое возникает при отделении от тела некоторой его части с определенной скоростью. Реактивное движение, например, выполняет ракета для расчета скорости ракеты. Рассмотрим в качестве примера действие реактивного двигателя. При сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла ракеты со скоростью
Ракета и выбрасываемые ее двигателем газы взаимодействуют между собой. На основании закона сохранения импульса при отсутствии внешних сил сумма векторов импульсов взаимодействующих тел остается постоянной. До начала работы двигателей импульс ракеты и горючего был равен нулю; следовательно, и после включения двигателей сумма векторов импульса ракеты и импульса истекающих газов равна нулю: , (17.1) где - масса ракеты; - скорость ракеты; - масса выброшенных газов; - скорость истечения газов. Отсюда получаем , (17.2) а для модуля скорости ракеты имеем . (17.3) Эта формула применима для вычисления модуля скорости ракеты при условии небольшого изменения массы ракеты в результате работы ее двигателей. 4)Реактивная сила. Движение большинства современных самолётов является реактивным, т.к. происходит в результате истечения с огромной скоростью нагретых в двигателе газов. При этом самолёт движется в сторону, противоположную скорости истечения газов. Так же движутся и ракеты, выбрасывая из сопла продукты сгорания топлива. Примером реактивного движения может служить и отдача ствола пушки при выстреле. Силу, действующую на тело при реактивном движении, называют реактивной силой . Билет № 12- Неинерциальные системы отсчета В неинерциальных системах законы Ньютона, вообще говоря, уже не справедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода - так называемые силы инерции. Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а" каким оно обладает в неинерциальных системах отсчета, т. е. Так как F = mа (а - ускорение тела в инерциальной системе отсчета), то Силы инерции Силы инерции- силы,обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где - сила, действующая на тело со стороны других тел; - сила инерции, действующая на тело относительно поступательно движущейся НСО. - ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе; - центробежная сила инерции, действующая на тело относительно вращающейся НСО. - угловая скорость НСО относительно ИСО, - расстояние от тела до центра вращения; - кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. - угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта). Силы инерции направлены в сторону, противоположную ускорению. Силы инерции возникают только в системе отсчета, движущейся с ускорением, т.е. это кажущиеся силы. Центробежная сила инерции Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью  шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса

Представьте себе ревущий водопад. Грозно шумят мощные потоки воды, искрятся на солнце капли, белеет пена. Красиво, не правда ли?

Превращение одного вида механической энергии в другой

А как вы считаете, обладает ли эта несущаяся вниз стихия энергией? Никто не будет спорить с тем, что да. А вот какой энергией будет обладать вода - кинетической или потенциальной? И вот тут оказывается, что ни первый, ни второй варианты ответа не будут верны. А верным окажется ответ - падающая вниз вода обладает обоими видами энергии. То есть, одно и то же тело может обладать обоими видами энергии. Их сумму называют полной механической энергией тела: E=E_к+E_п. Более того, вода в данном случае не только обладает обоими видами энергии, но их величина меняется по ходу движения воды. Когда наша вода находится в верхней точке водопада и еще не начала падать, то она обладает максимальным значением потенциальной энергии. Кинетическая же энергия в данном случае равна нулю. Когда вода начинает падать вниз, у нее появляется кинетическая энергия движения. По ходу движения вниз потенциальная энергия уменьшается, так как уменьшается высота, а кинетическая, наоборот, возрастает, так как увеличивается скорость падения воды. То есть, происходит превращение одного вида энергии в другой. При этом полная механическая энергия сохраняется. В этом и заключается закон сохранения и превращения энергии.

Закон сохранения полной механической энергии

Закон сохранения полной механической энергии гласит: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной. Когда же присутствует, например, трение скольжения, тело вынуждено тратить часть энергии на его преодоление, и энергия, естественно будет уменьшаться. Поэтому в реальности, при передаче энергии практически всегда существуют потери, которые приходится учитывать.

Закон сохранения энергии можно представить в виде формулы. Если мы обозначим начальную и конечную энергию тела как E_1 и E_2, то закон сохранения энергии можно выразить так: E_1=E_2. В начальный момент времени тело имело скорость v_1 и высоту h_1:

E_1=(mv_1^2)/2+mgh_1.

В конечный момент времени со скоростью v_2 на высоте h_2 энергия

E_2=(mv_2^2)/2+mgh_2.

В соответствии с законом сохранения энергии:

(mv_1^2)/2+mgh_1=(mv_2^2)/2+mgh_2.

Если мы знаем начальные значения скорости и энергии, то мы можем высчитать конечную скорость на высоте h, или, наоборот, найти высоту, на которой тело будет иметь заданную скорость. При этом масса тела не имеет значения, так как она сократится из уравнения.

Энергия также может передаваться от одного тела к другому. Так, например, при выпуске стрелы из лука потенциальная энергия тетивы, превращается в кинетическую энергию летящей стрелы.

Вопросы.

1. Что называется механической (полной механической) энергией?

2. Как формулируется закон сохранения механической энергии?

Механическая энергия замкнутой системы тел остается постоянной, если между телами системы действуют только силы тяготения и силы упругости.
Е полн. = const

3. Может ли меняться с течением времени потенциальная или кинетическая энергия замкнутой системы?

Кинетическая и потенциальная энергия замкнутой системы могут меняться, преобразуясь друг в друга.

Упражнения.

1. Дайте математическую формулировку закона сохранения механической энергии (т.е. запишите его в виде уравнений).


2. Оторвавшаяся от крыши сосулька падает с высоты h 0 = 36 м от земли. Какую скорость v она будет иметь на высоте h = 31 м? (Представьте два способа решения: с применением закона сохранения механической энергии и без него; g= 10 м/с 2).


3. Шарик вылетает из детского пружинного пистолета вертикально вверх с начальной скоростью v 0 = 5 м/с. На какую высоту от места вылета он поднимется? (Представьте два способа решения: с применением закона сохранения механической энергии и без него; g= 10 м/с 2).

Закон Сохранения Механической Энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления , то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной .

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменениюпотенциальной энергиител, взятому с противоположным знаком:

Следовательно

E k1 +E p1 =E k2 +E p2 .

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражаетзакон сохранения энергии в механических процессах . Он является следствием законов Ньютона. СуммуE =E k +E p называютполной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

b. С учётом силтрения

Присматриваясь к движению шарика, подпрыгивающего на плите (§ 102), можно обнаружить, что после каждого удара шарик поднимается на немного меньшую высоту, чем раньше (рис. 170),т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближенно. Причина заключается в том, что в этом опыте возникают силы трения: сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и сумма потенциальной и кинетической энергий тел уменьшается. За счет этой убыли энергии и совершается работа против сил трения 1).

Уменьшение высоты отскока шарика после многих отражений от плиты.

Например, при падении тела с большой высоты скорость тела, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной (§ 68); кинетическая энергия тела перестает меняться, но его потенциальная энергия поднятия над землей уменьшается. Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.

Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. е. ее кинетическая энергия, и увеличение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.

Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а следовательно и его кинетическая энергия, меньше, чем та, которую он приобрел бы в отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения (за исключением движений в полной пустоте, например движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону - в сторону уменьшения суммарной энергии.

"Вообще, при наличии трения 1. закон сохранения механической энергии всегда нарушается и 2.сумма потенциальной и кинетической энергий тел уменьшается." Второе верно.Первое - наглая ложь ! Закон не нарушается. Dura lex sed lex.

1. Энергия тела – физическая величина, показывающая работу, которую может совершить рассматриваемое тело (за любое, в том числе неограниченное время наблюдения). Тело, совершающее положительную работу, теряет часть своей энергии. Если же положительная работа совершается над телом, энергия тела увеличивается. Для отрицательной работы – наоборот.

  • Энергией называют физическую величину, которая характеризует способность тела или системы взаимодействующих тел совершить работу.
  • Единица энергии в СИ 1 Джоуль (Дж).

2. Кинетической энергией называется энеpгия движущихся тел. Под движением тела следует понимать не только перемещение в пространстве, но и вращение тела. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения (перемещения в пространстве и/или вращения). Кинетическая энеpгия зависит от тела, по отношению к которому измеряют скорость рассматриваемого тела.

  • Кинетическая энергия Е к тела массой m , движущегося со скоростью v , определяется по формуле Е к =mv 2 /2

3. Потенциальной энергией называется энергия взаимодействующих тел или частей тела. Различают потенциальную энергию тел, находящихся под действием силы тяжести, силы упругости, архимедовой силы. Любая потенциальная энергия зависит от силы взаимодействия и расстояния между взаимодействующими телами (или частями тела). Потенциальная энергия отсчитывается от условного нулевого уровня.

  • Потенциальной энергией обладают, например, груз, поднятый над поверхностью Земли, и сжатая пружина.
  • Потенциальная энергия поднятого груза Е п = mgh .
  • Кинетическая энергия может превращаться в потенциальную, и обратно.

4. Механической энергией тела называют сумму его кинетической и потенциальной энергий . Поэтому механическая энеpгия любого тела зависит от выбора тела, по отношению к которому измеряют скорость рассматриваемого тела, а также от выбора условных нулевых уровней для всех разновидностей имеющихся у тела потенциальных энергий.

  • Механическая энергия характеризует способность тела или системы тел совершить работу вследствие изменения скорости тела или взаимного положения взаимодействующих тел.

5. Внутренней энергией называется такая энергия тела, за счёт которой может совершаться механическая работа, не вызывая убыли механической энергии этого тела. Внутренняя энеpгия не зависит от механической энергии тела и зависит от строения тела и его состояния.

6. Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

  • Закон сохранения механической энергии : если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Таблица «Механическая энергия. Закон сохранения энергии».

Схема
Закон сохранения энергии. Углубленный уровень «