Механическая энергия. Закон сохранения энергии. Превращение энергии: закон сохранения энергии

В начале этой главы мы говори­ли, что энергия, как и импульс, сохраняется. Однако когда мы рас­сматривали кинетическую и потен­циальную энергии, об их сохранении ничего не говорилось. В чем же состоит закон сохранения энергии?

Рассмотрим, как изменяется энер­гия тел, взаимодействующих только друг с другом. Такие системы, как мы знаем, называются замкнутыми. Такая система может обладать и кинетической и потенциальной энер­гией. Кинетической - потому, что тела системы могут двигаться, по­тенциальной - потому, что тела сис­темы взаимодействуют друг с другом. И та и другая энергия системы может изменяться с течением вре­мени.

Обозначим через E р1 потенциаль­ную энергию системы в какой-то момент времени, а через E k 1 общую кинетическую энергию системы тел в тот же момент времени. Потен­циальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответ­ственно через Е Р2 и E k 2

В предыдущих параграфах мы установили, что, когда тела взаимо­действуют друг с другом силами тяжести или упругости, совершенная этими силами работа равна взятому с противоположным знаком изме­нению потенциальной энергии тел системы:


С другой стороны, согласно тео­реме о кинетической энергии, эта же работа равна изменению кинети­ческой энергии:

A = E k2 – E k1 (2)

Энергия превращается из одного вида в другой.

В левых частях равенств (1) и (2) стоит одна и та же величина - работа сил взаимо­действия тел системы. Значит, и правые части равны друг другу:

E k2 - E k 1 = - (Ep 2 - Ep 1). (3)

Из этого равенства видно, что кинетическая и потенциальная энер­гия в результате взаимодействия и движения тел изменяется так, что увеличение одной из них равно уменьшению другой. На сколько одна из них возрастает, на столько другая уменьшается. Дело выглядит так, как будто бы происходит превращение одного вида энергии в другой. В этом состоит важная особенность величины, называемой энергией: есть различные формы энергии, и они могут превращаться одна в другую. Но ни об одной из них нельзя сказать, что она сохраняется.

Полная механическая энергия. Закон сохранения полной механи­ческой энергии.

Если из двух видов энергии один уменьшается ровно на столько, на сколько увеличивается другой, то это значит, что сумма энергий обоих видов остается неиз­менной. Это видно из формулы (3), которую можно переписать так:

E k 2 + Ep 2 = E k 1 + Ep 1 . (4)

В левой части равенства мы видим сумму кинетической и потен­циальной энергий системы тел в ка­кой-то момент времени, в правой - ту же сумму в другой момент времени. Эта сумма называется полной механической энергией систе­мы. Для системы тел, в которой действует сила тяжести, например для системы «Земля - падающее тело» или «Земля - тело, брошенное вверх», она равна mgh+mv 2 /2 .



Если между телами системы действует сила упругости, то полная механи­ческая энергия запишется так:

kx 2 /2 + mv 2 /2

Равенство (4) означает, что пол­ная механическая энергия замкнутой системы тел остается неизменной, сохраняется. В этом состоит закон сохранения энергии.

Полная механическая энергия замкнутой системы тел, взаимодей­ствующих силами тяготения или си­лами упругости, остается неизменной при любых движениях тел системы.

Превращения энергии и работа.

Тот факт, что одна и та же работа приводит к увеличению кинетической или к такому же уменьшению по­тенциальной энергии, означает, что работа равна энергии, превратив­шейся из одного вида в другой. Мы видели, например, что поло­жительная работа силы равна умень­шению потенциальной энергии. Но, согласно закону сохранения полной энергии, потенциальная энергия не может уменьшаться, не превратив­шись в энергию кинетическую!

Закон сохранения энергии, как и закон сохранения импульса, можно использовать для решения многих механических задач. Этим способом многие задачи решаются более прос­то, чем при прямом применении законов движения.

1. Что такое полная механическая энер­гия?

2. В чем состоит закон сохранения ме­ханической энергии?

3. Выполняется ли закон сохранения ме­ханической энергии, если действуют одно­временно и сила тяжести и упругая сила?

4. Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия? 5. Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Измени­лась ли его механическая энергия?

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

ПРИМЕР 1

Задание Тело массы упало с высоты на площадку, прикрепленную к пружине с коэффициентом упругости (рис.1). Каково смещение пружины ()?


Решение За ноль потенциальной энергии примем положение площадки до падения на нее груза. Потенциальная энергия тела, поднятого на высоту ,переходит в потенциальную энергию сжатой пружины. Запишем закон сохранения энергии системы тело — пружина:

Получили квадратное уравнение:

Решая квадратное уравнение получим:

Ответ

ПРИМЕР 2

Задание Объясните, почему говорят о всеобщем характере закона сохранения энергии, но известно, что при наличии неконсервативных сил в системе механическая энергия убывает.
Решение Если сил трения в системе нет, то закон сохранения механической энергии выполняется, то есть полная механическая энергия не изменяется во времени. При действии сил трения, механическая энергия убывает, но при этом увеличивается внутренняя энергия. С развитием физики как науки были обнаружены новые виды энергии (световая энергия, электромагнитная энергия, химическая энергия, ядерная энергия). Было выяснено, что если над телом совершается работа, то она равна приращению суммы всех видов энергии тела. Если тело само совершает работу, над другими телами, то эта работа равна убыли суммарной энергии этого тела. Все виды энергии переходят из одного вида в другой. Причем, при всех переходах суммарная энергия остается неизменной. В этом и состоит всеобщность закона сохранения энергии.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы - закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона . Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия - абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий:

Изменение кинетической энергии системы равно суммарной работе всех сил, действующих на тела этой системы:

∆Eк = Aпот + Aнепот + Aвнеш (1)

Изменение потенциальной энергии системы равно работе потенциальных сил с обратным знаком:

∆Eп = - Aпот (2)

Очевидно, что изменение полной механической энергии равно:

∆E = ∆Eп + ∆Eк (3)

Из уравнений (1-3) получим, что изменение полной механической энергии равно суммарной работе всех внешних сил и внутренних не потенциальных сил.

∆Eк = Aвнеш + Aнепот (4)

Формула (4) представляет из себя закон изменения полной механической энергии системы тел.

В чем состоит закон сохранения механической энергии ? Закон сохранения механической энергии состоит в том, что полная механическая энергия замкнутой системы остается неизменной.


4) Вращательное движение. Момент импульса. Тензор инерции. Кинетическая энергия и момент импульса твёрдого тела. Теоремы Кёнига и Штейнера-Гюйгенса.

Вращательное движение.

Вращательное движение - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

При равномерном вращении (T оборотов в секунду),

§ Частота вращения - число оборотов тела в единицу времени.

,

§ Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением .

§ Линейная скорость точки, находящейся на расстоянии R от оси вращения

§ Угловая скорость вращения тела

.

§ Кинетическая энергия вращательного движения

где I z - момент инерции тела относительно оси вращения. - угловая скорость

Момент импульса.

Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

Тензор инерции.

Тензор инерции - в механике абсолютно твёрдого тела - тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

где - тензор инерции, - угловая скорость, - момент импульса

Кинетическая энергия.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Единица измерения в системе СИ - Джоуль. Кинетическая энергия есть разность между полной энергией системы и её энергией покоя. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где: - масса тела, - скорость центра масс тела, - момент инерции тела, - угловая скорость тела.

Теорема Кёнига.

Теорема Кёнига позволяет выразить полную кинетическую энергию системы через энергию движения центра масс и энергию движения относительно центра масс.

Кинетическая энергия системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

,

где - полная кинетическая энергия, - энергия движения центра масс, - относительная кинетическая энергия.

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы во вращательном движении относительно центра масс.

Теорема Штейнера-Гюйгенса.

Теорема Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Где - известный момент инерции относительно оси, проходящей через центр масс тела, - искомый момент инерции относительно параллельной оси, - масса тела, - расстояние между указанными осями.


5) Система двух частиц. Приведённая масса. Центральное поле. Законы Кеплера.

Приведённая масса.

Приведённая масса - условная характеристика распределения масс в движущейся механической системе, зависящая от физических параметров системы (масс, моментов инерции, и др.) и от её закона движения.

Обычно приведенная масса определяется из равенства , где - кинетическая энергия системы, а - скорость той точки системы, к которой приводится масса. В более общем виде приведённая масса является коэффициентом инерции в выражении кинетической энергии системы со стационарными связями, положение которой определяется обобщёнными координатами

где точка означает дифференцирование по времени, а есть функции обобщённых координат.

Система двух частиц.

Задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды.

Задачу двух тел можно представить как две независимых задачи одного тела, которые привлекают решение для движения одной частицы во внешнем потенциале. Так как многие задачи с одним телом могут быть решены точно, соответствующая задача с двумя телами также может быть решена. В отличие от этого, задача с тремя телами (и, более широко, задача n тел) не может быть решена, кроме специальных случаев.

В задаче двух тел, возникающей, например, в небесной механике или теории рассеяния, приведённая масса появляется как некая эффективная масса, когда задачу двух тел сводят к двум задачам об одном теле. Рассмотрим два тела: одно с массой и другое с массой . В эквивалентной проблеме одного тела рассматривают движение тела с приведённой массой, равной

где сила, действующая на эту массу, дается силой, действующей между этими двумя телами. Видно, что приведённая масса равна половине среднего гармонического двух масс.

Центральное поле.

Сведя задачу о движении двух тел к задаче о движении одного тела, мы пришли к вопросу об определении движения частицы во внешнем поле, в котором ее потенциальная энергия зависит только от расстояния до определенной неподвижной точки; такое поле называют центральным. Сила

действующая на частицу, по абсолютной величине зависит при этом тоже только от и направлена в каждой точке вдоль радиус-вектора.

При движении в центральном поле сохраняется момент системы относительно центра поля. Для одной частицы это есть

Законы Кеплера.

Законы Кеплера - три эмпирических соотношения. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , - массы планеты и Солнца.

1. Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

2. Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.


6) Функция Лагранжа. Уравнения Лагранжа. Обобщённые импульсы, энергия. Циклические координаты. Фукнция Гамильтона и уравнения Гамильтона.

Функция Лагранжа.


7) Гармонические колебания. Амплитуда. Частота. Пружинный маятник, математический маятник, физический маятник.

Гармонические колебания.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

§ Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

§ Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Амплитуда.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.

Иначе: Амплитуда - модуль максимального отклонения тела от положения равновесия. Например:

§ амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины.

Частота.

Частота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Стандартные обозначения в формулах - , , или . Единицей частоты в СИ в общем случае является Гц. Величина, обратная частоте, называется периодом.

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Пружинный маятник.

Пружинный маятник - механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения. Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Математический маятник.

Математический маятник - осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Плоский математический маятник со стержнем - система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Физический маятник.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

8) Колебания с трением. Диссипативная функция.

В реальных системах всегда происходит диссипация энергии. Если потери энергии не будут компенсироваться за счет внешних устройств, то колебания с течением времени будут затухать и через какое-то время прекратятся вообще. Рассмотрим колебания пружинного маятника в вязкой среде.

Для тела, движущегося в однородной вязкой среде, сила трения зависит только от скорости. При малых скоростях можно считать, что сила трения

, где бета – положительный постоянный коэффициент.

К энергии

Выводы.

· Характер собственных колебаний при наличии силы трения определяется соотношением между и . При – апериодический режим (3); – колебания описываются периодическим законом c экспоненциально убывающей от времени амплитудой (4); – режим критического затухания (5).

· Добротность колебательной системы является очень важным параметром, характеризующим диссипационные процессы в системе.

Диссипативная функция (функция рассеяния) - функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте - в тепловую, например, для учёта влияния сил вязкого трения на движение механической системы. Диссипативная функция характеризует степень убывания механической энергии этой системы. Диссипативная функция, делённая на абсолютную температуру, определяет скорость, с которой возрастает энтропия в системе (т. н. производство энтропии). Диссипативная функция имеет размерность мощности.


9) Вынужденные колебания без трения. Биения. Резонанс.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.